Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (1) : 8-11    https://doi.org/10.1007/s11515-010-0003-z
Research articles
Epigenetic reprogramming: roads to pluripotency
Wei LI1,Qi ZHOU2, 3,
1.State Key Laboratory of Reproductive Biology, Institute of Zoology, Beijing 100101, China;Graduate School, Chinese Academy of Sciences, Beijing 100049, China; 2.State Key Laboratory of Reproductive Biology, Institute of Zoology, Beijing 100101, China; 3.2010-03-15 9:36:17;
 Download: PDF(84 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Epigenetic reprogramming provides valuable resources for customized pluripotent stem cells generation, which are thought to be important bases of future regenerative medicine. Here we review the commonly used methods for epigenetic reprogramming: somatic cell nuclear transfer, cell fusion, cell extract treatment, inducing pluripotency by defined molecules, and briefly discuss their advantages and limitations. Finally we propose that mechanisms underlying epigenetic reprogramming and safety evaluation platform will be future research directions.
Keywords Epigenetic reprogramming      pluripotency      regenerative medicine      
Issue Date: 01 February 2010
 Cite this article:   
Wei LI,Qi ZHOU,管理员. Epigenetic reprogramming: roads to pluripotency[J]. Front. Biol., 2010, 5(1): 8-11.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0003-z
https://academic.hep.com.cn/fib/EN/Y2010/V5/I1/8
Boland M J, Hazen J L, Nazor K L, Rodriguez A R, Gifford W, Martin G, Kupriyanov S, Baldwin K K (2009). Adultmice generated from induced pluripotent stem cells. Nature, 461: 91–4

doi: 10.1038/nature08310
Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006). ES cells derived from cloned and fertilized blastocystsare transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A, 103: 933–938

doi: 10.1073/pnas.0510485103
Briggs R, King T J (1952). Transplantationof living nuclei from blastula cells into enucleated frogs’eggs. Proc Natl Acad Sci U S A, 38: 455–463

doi: 10.1073/pnas.38.5.455
Byrne J A, Pedersen D A, Clepper L L, Nelson M, Sanger W G, Gokhale S, Wolf D P, Mitalipov S M (2007). Producingprimate embryonic stem cells by somatic cell nuclear transfer. Nature, 450: 497–502

doi: 10.1038/nature06357
Cowan C A, Atienza J, Melton D A, Eggan K (2005). Nuclear reprogramming of somatic cells after fusion with human embryonicstem cells. Science, 309: 1369–1373

doi: 10.1126/science.1116447
Egli D, Rosains J, Birkhoff G, Eggan K (2007). Developmental reprogramming after chromosome transfer into mitoticmouse zygotes. Nature, 447: 679–685

doi: 10.1038/nature05879
Evans M J, Kaufman M H (1981). Establishmentin culture of pluripotential cells from mouse embryos. Nature, 292: 154–156

doi: 10.1038/292154a0
Freberg C T, Dahl J A, Timoskainen S, Collas P (2007). Epigenetic reprogramming of OCT4 and NANOG regulatoryregions by embryonal carcinoma cell extract. Mol Biol Cell, 18: 1543–1553

doi: 10.1091/mbc.E07-01-0029
Gurdon J B, Uehlinger V (1966). “Fertile”intestine nuclei. Nature, 210: 1240–1241

doi: 10.1038/2101240a0
Hakelien A M, Landsverk H B, Robl J M, Skalhegg B S, Collas P (2002). Reprogrammingfibroblasts to express T-cell functions using cell extracts. Nat Biotechnol, 20: 460–466

doi: 10.1038/nbt0502-460
Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009). iPS cells can supportfull-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5: 135–138

doi: 10.1016/j.stem.2009.07.001
Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y (1998). Eight calves clonedfrom somatic cells of a single adult. Science, 282: 2095–2098

doi: 10.1126/science.282.5396.2095
Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S (2009a). Generation of human induced pluripotent stem cells bydirect delivery of reprogramming proteins. Cell Stem Cell, 4: 472–476

doi: 10.1016/j.stem.2009.05.005
Kim J B, Greber B, Araúzo-Bravo M J, Meyer J, Park K I, Zaehres H, Schöler H R (2009b). Direct reprogramming of human neural stem cells by OCT4. Nature, 461: 649

doi: 10.1038/nature08436
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K(2007). Directly reprogrammed fibroblastsshow global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1: 55–70

doi: 10.1016/j.stem.2007.05.014
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009). Variationin the safety of induced pluripotent stem cell lines. Nat Biotechnol, 27: 743–745

doi: 10.1038/nbt.1554
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent inducedpluripotent stem cells. Nature, 448: 313–317

doi: 10.1038/nature05934
Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, DAI Y F, Boone J, Walker S, Ayares D L, Colman A, Campbell K H S(2000). Cloned pigs produced by nuclear transfer from adultsomatic cells. Nature, 407: 86–90

doi: 10.1038/35024082
Rideout W M 3rd, Hochedlinger K, Kyba M, Daley G Q, Jaenisch R (2002). Correctionof a genetic defect by nuclear transplantation and combined cell andgene therapy. Cell, 109: 17–27

doi: 10.1016/S0092-8674(02)00681-5
Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S(2008). Induction of pluripotent stem cellsfrom mouse embryonic fibroblasts by Oct4 and Klf4 with small-moleculecompounds. Cell Stem Cell, 3: 568–574

doi: 10.1016/j.stem.2008.10.004
Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001). Nuclearreprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 11: 1553–1558

doi: 10.1016/S0960-9822(01)00459-6
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult humanfibroblasts by defined factors. Cell, 131: 861–872

doi: 10.1016/j.cell.2007.11.019
Takahashi K, Yamanaka S (2006). Inductionof pluripotent stem cells from mouse embryonic and adult fibroblastcultures by defined factors. Cell, 126: 663–676

doi: 10.1016/j.cell.2006.07.024
Thomson J A, Itskovitz-eldor J, Shapir S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M(1998). Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147

doi: 10.1126/science.282.5391.1145
Wakayama T, Perry A C F, Zuccotti M, Johnson K R, Yanagimachi R (1998). Full-termdevelopment of mice from enucleated oocytes injected with cumuluscell nuclei. Nature, 394: 369–374

doi: 10.1038/28615
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R (2007). In vitroreprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318–324

doi: 10.1038/nature05944
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H (1997). Viableoffspring derived from fetal and adult mammalian cells. Nature, 385: 810–813

doi: 10.1038/385810a0
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009). Humaninduced pluripotent stem cells free of vector and transgene sequences. Science, 324: 797–801

doi: 10.1126/science.1172482
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007). Induced pluripotent stem cell linesderived from human somatic cells. Science, 318: 1917–1920
Zhao C, Yao R, Hao J, Ding C, Fan Y, Dai X, Li W, Hai T, Liu Z, Yu Y, Wang Y, Hou X, Ji W, Zhou Q, Jouneau A, Zeng F, Wang L (2007). Establishmentof customized mouse stem cell lines by sequential nuclear transfer. Cell Res, 17: 80–87

doi: 10.1038/sj.cr.7310139
Zhao X Y, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo C L, Ma Q W, Wang L, Zeng F, Zhou Q (2009). iPS cellsproduce viable mice through tetraploid complementation. Nature, 461: 86–90

doi: 10.1038/nature08267
Zhou Q, Renard J P, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003). Generationof fertile cloned rats by regulating oocyte activation. Science, 302: 1179

doi: 10.1126/science.1088313
[1] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[2] Behnam Ebrahimi. Chemical-only reprogramming to pluripotency[J]. Front. Biol., 2016, 11(2): 75-84.
[3] Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed