|
|
Epigenetic reprogramming: roads to pluripotency |
Wei LI1,Qi ZHOU2, 3, |
1.State Key Laboratory
of Reproductive Biology, Institute of Zoology, Beijing 100101, China;Graduate School, Chinese
Academy of Sciences, Beijing 100049, China; 2.State Key Laboratory
of Reproductive Biology, Institute of Zoology, Beijing 100101, China; 3.2010-03-15 9:36:17; |
|
|
Abstract Epigenetic reprogramming provides valuable resources for customized pluripotent stem cells generation, which are thought to be important bases of future regenerative medicine. Here we review the commonly used methods for epigenetic reprogramming: somatic cell nuclear transfer, cell fusion, cell extract treatment, inducing pluripotency by defined molecules, and briefly discuss their advantages and limitations. Finally we propose that mechanisms underlying epigenetic reprogramming and safety evaluation platform will be future research directions.
|
Keywords
Epigenetic reprogramming
pluripotency
regenerative medicine
|
Issue Date: 01 February 2010
|
|
|
Boland M J, Hazen J L, Nazor K L, Rodriguez A R, Gifford W, Martin G, Kupriyanov S, Baldwin K K (2009). Adultmice generated from induced pluripotent stem cells. Nature, 461: 91–4
doi: 10.1038/nature08310
|
|
Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006). ES cells derived from cloned and fertilized blastocystsare transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A, 103: 933–938
doi: 10.1073/pnas.0510485103
|
|
Briggs R, King T J (1952). Transplantationof living nuclei from blastula cells into enucleated frogs’eggs. Proc Natl Acad Sci U S A, 38: 455–463
doi: 10.1073/pnas.38.5.455
|
|
Byrne J A, Pedersen D A, Clepper L L, Nelson M, Sanger W G, Gokhale S, Wolf D P, Mitalipov S M (2007). Producingprimate embryonic stem cells by somatic cell nuclear transfer. Nature, 450: 497–502
doi: 10.1038/nature06357
|
|
Cowan C A, Atienza J, Melton D A, Eggan K (2005). Nuclear reprogramming of somatic cells after fusion with human embryonicstem cells. Science, 309: 1369–1373
doi: 10.1126/science.1116447
|
|
Egli D, Rosains J, Birkhoff G, Eggan K (2007). Developmental reprogramming after chromosome transfer into mitoticmouse zygotes. Nature, 447: 679–685
doi: 10.1038/nature05879
|
|
Evans M J, Kaufman M H (1981). Establishmentin culture of pluripotential cells from mouse embryos. Nature, 292: 154–156
doi: 10.1038/292154a0
|
|
Freberg C T, Dahl J A, Timoskainen S, Collas P (2007). Epigenetic reprogramming of OCT4 and NANOG regulatoryregions by embryonal carcinoma cell extract. Mol Biol Cell, 18: 1543–1553
doi: 10.1091/mbc.E07-01-0029
|
|
Gurdon J B, Uehlinger V (1966). “Fertile”intestine nuclei. Nature, 210: 1240–1241
doi: 10.1038/2101240a0
|
|
Hakelien A M, Landsverk H B, Robl J M, Skalhegg B S, Collas P (2002). Reprogrammingfibroblasts to express T-cell functions using cell extracts. Nat Biotechnol, 20: 460–466
doi: 10.1038/nbt0502-460
|
|
Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009). iPS cells can supportfull-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5: 135–138
doi: 10.1016/j.stem.2009.07.001
|
|
Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y (1998). Eight calves clonedfrom somatic cells of a single adult. Science, 282: 2095–2098
doi: 10.1126/science.282.5396.2095
|
|
Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S (2009a). Generation of human induced pluripotent stem cells bydirect delivery of reprogramming proteins. Cell Stem Cell, 4: 472–476
doi: 10.1016/j.stem.2009.05.005
|
|
Kim J B, Greber B, Araúzo-Bravo M J, Meyer J, Park K I, Zaehres H, Schöler H R (2009b). Direct reprogramming of human neural stem cells by OCT4. Nature, 461: 649
doi: 10.1038/nature08436
|
|
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K(2007). Directly reprogrammed fibroblastsshow global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1: 55–70
doi: 10.1016/j.stem.2007.05.014
|
|
Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009). Variationin the safety of induced pluripotent stem cell lines. Nat Biotechnol, 27: 743–745
doi: 10.1038/nbt.1554
|
|
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent inducedpluripotent stem cells. Nature, 448: 313–317
doi: 10.1038/nature05934
|
|
Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, DAI Y F, Boone J, Walker S, Ayares D L, Colman A, Campbell K H S(2000). Cloned pigs produced by nuclear transfer from adultsomatic cells. Nature, 407: 86–90
doi: 10.1038/35024082
|
|
Rideout W M 3rd, Hochedlinger K, Kyba M, Daley G Q, Jaenisch R (2002). Correctionof a genetic defect by nuclear transplantation and combined cell andgene therapy. Cell, 109: 17–27
doi: 10.1016/S0092-8674(02)00681-5
|
|
Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S(2008). Induction of pluripotent stem cellsfrom mouse embryonic fibroblasts by Oct4 and Klf4 with small-moleculecompounds. Cell Stem Cell, 3: 568–574
doi: 10.1016/j.stem.2008.10.004
|
|
Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001). Nuclearreprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 11: 1553–1558
doi: 10.1016/S0960-9822(01)00459-6
|
|
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult humanfibroblasts by defined factors. Cell, 131: 861–872
doi: 10.1016/j.cell.2007.11.019
|
|
Takahashi K, Yamanaka S (2006). Inductionof pluripotent stem cells from mouse embryonic and adult fibroblastcultures by defined factors. Cell, 126: 663–676
doi: 10.1016/j.cell.2006.07.024
|
|
Thomson J A, Itskovitz-eldor J, Shapir S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M(1998). Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147
doi: 10.1126/science.282.5391.1145
|
|
Wakayama T, Perry A C F, Zuccotti M, Johnson K R, Yanagimachi R (1998). Full-termdevelopment of mice from enucleated oocytes injected with cumuluscell nuclei. Nature, 394: 369–374
doi: 10.1038/28615
|
|
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R (2007). In vitroreprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448: 318–324
doi: 10.1038/nature05944
|
|
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H (1997). Viableoffspring derived from fetal and adult mammalian cells. Nature, 385: 810–813
doi: 10.1038/385810a0
|
|
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009). Humaninduced pluripotent stem cells free of vector and transgene sequences. Science, 324: 797–801
doi: 10.1126/science.1172482
|
|
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007). Induced pluripotent stem cell linesderived from human somatic cells. Science, 318: 1917–1920
|
|
Zhao C, Yao R, Hao J, Ding C, Fan Y, Dai X, Li W, Hai T, Liu Z, Yu Y, Wang Y, Hou X, Ji W, Zhou Q, Jouneau A, Zeng F, Wang L (2007). Establishmentof customized mouse stem cell lines by sequential nuclear transfer. Cell Res, 17: 80–87
doi: 10.1038/sj.cr.7310139
|
|
Zhao X Y, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo C L, Ma Q W, Wang L, Zeng F, Zhou Q (2009). iPS cellsproduce viable mice through tetraploid complementation. Nature, 461: 86–90
doi: 10.1038/nature08267
|
|
Zhou Q, Renard J P, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003). Generationof fertile cloned rats by regulating oocyte activation. Science, 302: 1179
doi: 10.1126/science.1088313
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|