|
|
GPCR, a rider of Alzheimer’s disease |
Xiaosong LIU1,2, Jian ZHAO1( ) |
1. Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Alzheimer’s disease (AD) is the most common type of dementia that affects thinking, learning, memory and behavior of older people. Based on the previous studies, three pathogenic pathways are now commonly accepted as the culprits of this disease namely, amyloid-β pathway, tauopathology and cholinergic dysfunction. This review focuses on the current findings on the regulatory roles of G protein-coupled receptors (GPCRs) in the pathological progression of AD and discusses the potential of the GPCRs as novel therapeutic targets for AD.
|
Keywords
Alzheimer’s disease (AD)
G protein-coupled receptors (GPCRs)
secretase
amyloid-β
tau
|
Corresponding Author(s):
ZHAO Jian,Email:jzhao@sibs.ac.cn
|
Issue Date: 01 August 2011
|
|
1 |
AbdAlla S, Lother H, el Missiry A, Langer A, Sergeev P, el Faramawy Y, Quitterer U (2009).Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J Biol Chem , 284: 6554–6565 19074441 doi: 10.1074/jbc.M807746200
|
2 |
Alonso A C, Grundke-Iqbal I, Iqbal K (1996). Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med , 2(7): 783–787 doi: 10.1038/nm0796-783 pmid:8673924
|
3 |
Alonso A C, Zaidi T, Grundke-Iqbal I, Iqbal K (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA , 91(12): 5562–5566 doi: 10.1073/pnas.91.12.5562 pmid:8202528
|
4 |
Arjona A A, Pooler A M, Lee R K, Wurtman R J (2002). Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res , 951(1): 135–140 doi: 10.1016/S0006-8993(02)03153-0 pmid:12231467
|
5 |
Arriagada P V, Growdon J H, Hedley-Whyte E T, Hyman B T (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology , 42(3 Pt 1): 631–639 pmid:1549228
|
6 |
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun , 301(1): 231–235 doi: 10.1016/S0006-291X(02)02999-6 pmid:12535668
|
7 |
Ashe K H (2007). A tale about tau. N Engl J Med , 357(9): 933–935 doi: 10.1056/NEJMcibr073552 pmid:17761598
|
8 |
Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci , 8(9): 663–672 doi: 10.1038/nrn2194 pmid:17684513
|
9 |
Baxter M G, Chiba A A (1999). Cognitive functions of the basal forebrain. Curr Opin Neurobiol , 9(2): 178–183 doi: 10.1016/S0959-4388(99)80024-5 pmid:10322180
|
10 |
Blalock E M, Geddes J W, Chen K C, Porter N M, Markesbery W R, Landfield P W (2004). Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA , 101(7): 2173–2178 doi: 10.1073/pnas.0308512100 pmid:14769913
|
11 |
Bramham C R, Milgram N W, Srebro B (1991). Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res , 567(1): 42–50 doi: 10.1016/0006-8993(91)91433-2 pmid:1667745
|
12 |
Brunden K R, Trojanowski J Q, Lee V M (2009). Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov , 8(10): 783–793 doi: 10.1038/nrd2959 pmid:19794442
|
13 |
Budde T (2006). AICD treatment in 2004—state of the art. Eur J Med Res , 11(10): 432–438 pmid:17107877
|
14 |
Caccamo A, Oddo S, Billings L M, Green K N, Martinez-Coria H, Fisher A, LaFerla F M (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron , 49(5): 671–682 doi: 10.1016/j.neuron.2006.01.020 pmid:16504943
|
15 |
Chartier-Harlin M C, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature , 353(6347): 844–846 doi: 10.1038/353844a0 pmid:1944558
|
16 |
Citron M (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov , 9(5): 387–398 doi: 10.1038/nrd2896 pmid:20431570
|
17 |
Doraiswamy P M, Xiong G L (2006). Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother , 7(1): 1–10 doi: 10.1517/14656566.7.1.1 pmid:16370917
|
18 |
El Khoury J, Toft M, Hickman S E, Means T K, Terada K, Geula C, Luster A D (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med , 13(4): 432–438 doi: 10.1038/nm1555 pmid:17351623
|
19 |
Ferraguti F, Baldani-Guerra B, Corsi M, Nakanishi S, Corti C (1999). Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur J Neurosci , 11(6): 2073–2082 doi: 10.1046/j.1460-9568.1999.00626.x pmid:10336676
|
20 |
Fisher A (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics , 5(3): 433–442 doi: 10.1016/j.nurt.2008.05.002 pmid:18625455
|
21 |
Francis R, McGrath G, Zhang J, Ruddy D A, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis M C, Parks A L, Xu W, Li J, Gurney M, Myers R L, Himes C S, Hiebsch R, Ruble C, Nye J S, Curtis D (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell , 3(1): 85–97 doi: 10.1016/S1534-5807(02)00189-2 pmid:12110170
|
22 |
Gallagher M, King R A, Young N B (1983). Opiate antagonists improve spatial memory. Science , 221(4614): 975–976 doi: 6879198" target="_blank">10.1126/science. pmid:6879198 pmid:6879198
|
23 |
Gilman A G (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem , 56(1): 615–649 doi: 10.1146/annurev.bi.56.070187.003151 pmid:3113327
|
24 |
Goate A, Chartier-Harlin M C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature , 349(6311): 704–706 doi: 10.1038/349704a0 pmid:1671712
|
25 |
Goedert M, Spillantini M G (2006). A century of Alzheimer’s disease. Science , 314(5800): 777–781 doi: 10.1126/science.1132814 pmid:17082447
|
26 |
Gomez-Isla T, Hollister R, West H, Mui S, Growdon J H, Petersen R C, Parisi J E, Hyman B T (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol , 41(1): 17–24 9005861 doi: 10.1002/ana.410410106
|
27 |
Gong C X, Iqbal K (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem , 15(23): 2321–2328 doi: 10.2174/092986708785909111 pmid:18855662
|
28 |
Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med , 15(3): 112–119 doi: 10.1016/j.molmed.2009.01.003 pmid:19246243
|
29 |
Hesselgesser J, Horuk R (1999). Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol , 5(1): 13–26 doi: 10.3109/13550289909029741 pmid:10190686
|
30 |
Hu Y, Fortini M E (2003). Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol , 161(4): 685–690 doi: 10.1083/jcb.200304014 pmid:12771124
|
31 |
Iismaa T P, Kiefer J, Liu M L, Baker E, Sutherland G R, Shine J (1994). Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics , 24(2): 391–394 doi: 10.1006/geno.1994.1635 pmid:7698767
|
32 |
Ittner L M, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, W?lfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, G?tz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell , 142(3): 387–397 doi: 10.1016/j.cell.2010.06.036 pmid:20655099
|
33 |
Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard N P, Gerard C, Hama E, Lee H J, Saido T C (2001). Metabolic regulation of brain Abeta by neprilysin. Science , 292(5521): 1550–1552 doi: 10.1126/science.1059946 pmid:11375493
|
34 |
Ladner C J, Lee J M (1998). Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol , 57(8): 719–731 doi: 10.1097/00005072-199808000-00001 pmid:9720487
|
35 |
LaFerla F M, Green K N, Oddo S (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci , 8(7): 499–509 doi: 10.1038/nrn2168 pmid:17551515
|
36 |
Lee H G, Ogawa O, Zhu X, O’Neill M J, Petersen R B, Castellani R J, Ghanbari H, Perry G, Smith M A (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol , 107(4): 365–371 doi: 10.1007/s00401-004-0820-8 pmid:14872255
|
37 |
Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci , 24(1): 1121–1159 doi: 10.1146/annurev.neuro.24.1.1121 pmid:11520930
|
38 |
Lefkowitz R J (2007). Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) , 190(1): 9–19 doi: 10.1111/j.1365-201X.2007.01693.x pmid:17428228
|
39 |
Lefkowitz R J, Shenoy S K (2005). Transduction of receptor signals by beta-arrestins. Science , 308(5721): 512–517 doi: 10.1126/science.1109237 pmid:15845844
|
40 |
Leissring M A, Farris W, Chang A Y, Walsh D M, Wu X, Sun X, Frosch M P, Selkoe D J (2003). Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron , 40(6): 1087–1093 doi: 10.1016/S0896-6273(03)00787-6 pmid:14687544
|
41 |
Liu W H, Chang L S(2010). Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells BUNGARUS MULTICINCTUS PROTEASE INHIBITOR-LIKE PROTEIN-1 UNCOVERS THE CYTOTOXIC MECHANISM, J Biol Chem, 285(40): 30506–30515
|
42 |
Lleo A, Greenberg S M, Growdon J H (2006). Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med , 57(1): 513–533 doi: 10.1146/annurev.med.57.121304.131442 pmid:16409164
|
43 |
Martin Prince J J, Jackson J, eds (2010). Alzheimer’s Disease International, World Alzheimer Report 2009
|
44 |
Mathieu-Kia A M, Fan L Q, Kreek M J, Simon E J, Hiller J M (2001). Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res , 893(1-2): 121–134 doi: 10.1016/S0006-8993(00)03302-3 pmid:11223000
|
45 |
Matsuo E S, Shin R W, Billingsley M L, Van deVoorde A, O’Connor M, Trojanowski J Q, Lee V M (1994). Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron , 13(4): 989–1002 doi: 10.1016/0896-6273(94)90264-X pmid:7946342
|
46 |
Mesulam M M, Mufson E J, Wainer B H, Levey A I (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience , 10(4): 1185–1201 doi: 10.1016/0306-4522(83)90108-2 pmid:6320048
|
47 |
Mills J, Laurent Charest D, Lam F, Beyreuther K, Ida N, Pelech S L, Reiner P B (1997). Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci , 17(24): 9415–9422 pmid:9390997
|
48 |
Murrell J, Farlow M, Ghetti B, Benson M D (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science , 254(5028): 97–99 doi: 1925564" target="_blank">10.1126/science. pmid:1925564 pmid:1925564
|
49 |
Necula M, Kuret J (2004). Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem , 279(48): 49694–49703 doi: 10.1074/jbc.M405527200 pmid:15364924
|
50 |
Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006). Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med , 12(12): 1390–1396 doi: 10.1038/nm1485 pmid:17115048
|
51 |
Nitsch R M, Deng M, Growdon J H, Wurtman R J (1996). Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem , 271(8): 4188–4194 doi: 10.1074/jbc.271.8.4188 pmid:8626761
|
52 |
Phillips T, Barnes A, Scott S, Emson P, Rees S (1998). Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport , 9(10): 2335–2339 doi: 10.1097/00001756-199807130-00034 pmid:9694224
|
53 |
Pierce K L, Premont R T, Lefkowitz R J (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol , 3(9): 639–650 doi: 10.1038/nrm908 pmid:12209124
|
54 |
Qiu W Q, Ye Z, Kholodenko D, Seubert P, Selkoe D J (1997). Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem , 272(10): 6641–6646 doi: 10.1074/jbc.272.10.6641 pmid:9045694
|
55 |
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman L F, Galasko D R, Jutel M, Karydas A, Kaye J A, Leszek J, Miller B L, Minthon L, Quinn J F, Rabinovici G D, Robinson W H, Sabbagh M N, So Y T, Sparks D L, Tabaton M, Tinklenberg J, Yesavage J A, Tibshirani R, Wyss-Coray T (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med , 13(11): 1359–1362 doi: 10.1038/nm1653 pmid:17934472
|
56 |
Roberson E D, Mucke L (2006). 100 years and counting: prospects for defeating Alzheimer’s disease. Science , 314(5800): 781–784 doi: 10.1126/science.1132813 pmid:17082448
|
57 |
Rogaev E I, Sherrington R, Rogaeva E A, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser P E, Rommens J M, George-Hyslop P H S (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature , 376(6543): 775–778 doi: 10.1038/376775a0 pmid:7651536
|
58 |
Russo-Neustadt A, Cotman C W (1997). Adrenergic receptors in Alzheimer’s disease brain: selective increases in the cerebella of aggressive patients. J Neurosci , 17(14): 5573–5580 pmid:9204938
|
59 |
Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang S M, Suemoto T, Higuchi M, Saido T C (2005). Somatostatin regulates brain amyloid beta peptide Aβ42 through modulation of proteolytic degradation. Nat Med , 11(4): 434–439 doi: 10.1038/nm1206 pmid:15778722
|
60 |
Selkoe D J (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev , 81(2): 741–766 pmid:11274343
|
61 |
Shahani N, Brandt R (2002). Functions and malfunctions of the tau proteins. Cell Mol Life Sci , 59(10): 1668–1680 doi: 10.1007/PL00012495 pmid:12475178
|
62 |
Sherrington R, Rogaev E I, Liang Y, Rogaeva E A, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J F, Bruni A C, Montesi M P, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky R J, Wasco W, Da Silva H A, Haines J L, Perkicak-Vance M A, Tanzi R E, Roses A D, Fraser P E, Rommens J M, St George-Hyslop P H (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature , 375(6534): 754–760 doi: 10.1038/375754a0 pmid:7596406
|
63 |
Sinha S, Anderson J P, Barbour R, Basi G S, Caccavello R, Davis D, Doan M, Dovey H F, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari S M, Wang S, Walker D, Zhao J, McConlogue L, John V (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature , 402(6761): 537–540 doi: 10.1038/990114 pmid:10591214
|
64 |
Sinha S, Lieberburg I (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci USA , 96(20): 11049–11053 doi: 10.1073/pnas.96.20.11049 pmid:10500121
|
65 |
Sisodia S S, St George-Hyslop P H (2002). gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci , 3(4): 281–290 doi: 10.1038/nrn785 pmid:11967558
|
66 |
Solano D C, Sironi M, Bonfini C, Solerte S B, Govoni S, Racchi M (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J , 14(7): 1015–1022 pmid:10783157
|
67 |
Strittmatter W J, Saunders A M, Schmechel D, Pericak-Vance M, Enghild J, Salvesen G S, Roses A D (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA , 90(5): 1977–1981 doi: 10.1073/pnas.90.5.1977 pmid:8446617
|
68 |
Tabet N, Feldman H (2002). Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst Rev , (2): CD003673 pmid:12076498
|
69 |
Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature , 422(6930): 438–441 doi: 10.1038/nature01506 pmid:12660785
|
70 |
Teng L, Zhao J, Wang F, Ma L, Pei G (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res , 20(2): 138–153 doi: 10.1038/cr.2010.3 pmid:20066010
|
71 |
Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horré K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer D F, Pollet D, De Strooper B, Merchiers P (2009). The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science , 323(5916): 946–951 doi: 10.1126/science.1160649 pmid:19213921
|
72 |
Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008). ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol , 20(9): 1181–1187 doi: 10.1093/intimm/dxn076 pmid:18635581
|
73 |
Vassar R, Bennett B D, Babu-Khan S, Kahn S, Mendiaz E A, Denis P, Teplow D B, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski M A, Biere A L, Curran E, Burgess T, Louis J C, Collins F, Treanor J, Rogers G, Citron M (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science , 286(5440): 735–741 doi: 10.1126/science.286.5440.735 pmid:10531052
|
74 |
Watanabe N, Tomita T, Sato C, Kitamura T, Morohashi Y, Iwatsubo T (2005). Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. J Biol Chem , 280(51): 41967–41975 doi: 10.1074/jbc.M509066200 pmid:16234244
|
75 |
Wyss-Coray T (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med , 12(9): 1005–1015 pmid:16960575
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|