Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (4) : 282-288    https://doi.org/10.1007/s11515-011-1129-3
REVIEW
GPCR, a rider of Alzheimer’s disease
Xiaosong LIU1,2, Jian ZHAO1()
1. Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Alzheimer’s disease (AD) is the most common type of dementia that affects thinking, learning, memory and behavior of older people. Based on the previous studies, three pathogenic pathways are now commonly accepted as the culprits of this disease namely, amyloid-β pathway, tauopathology and cholinergic dysfunction. This review focuses on the current findings on the regulatory roles of G protein-coupled receptors (GPCRs) in the pathological progression of AD and discusses the potential of the GPCRs as novel therapeutic targets for AD.

Keywords Alzheimer’s disease (AD)      G protein-coupled receptors (GPCRs)      secretase      amyloid-β      tau     
Corresponding Author(s): ZHAO Jian,Email:jzhao@sibs.ac.cn   
Issue Date: 01 August 2011
 Cite this article:   
Xiaosong LIU,Jian ZHAO. GPCR, a rider of Alzheimer’s disease[J]. Front Biol, 2011, 6(4): 282-288.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1129-3
https://academic.hep.com.cn/fib/EN/Y2011/V6/I4/282
1 AbdAlla S, Lother H, el Missiry A, Langer A, Sergeev P, el Faramawy Y, Quitterer U (2009).Angiotensin II AT2 receptor oligomers mediate G-protein dysfunction in an animal model of Alzheimer disease. J Biol Chem , 284: 6554–6565 19074441
doi: 10.1074/jbc.M807746200
2 Alonso A C, Grundke-Iqbal I, Iqbal K (1996). Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med , 2(7): 783–787
doi: 10.1038/nm0796-783 pmid:8673924
3 Alonso A C, Zaidi T, Grundke-Iqbal I, Iqbal K (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA , 91(12): 5562–5566
doi: 10.1073/pnas.91.12.5562 pmid:8202528
4 Arjona A A, Pooler A M, Lee R K, Wurtman R J (2002). Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res , 951(1): 135–140
doi: 10.1016/S0006-8993(02)03153-0 pmid:12231467
5 Arriagada P V, Growdon J H, Hedley-Whyte E T, Hyman B T (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology , 42(3 Pt 1): 631–639
pmid:1549228
6 Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003). Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun , 301(1): 231–235
doi: 10.1016/S0006-291X(02)02999-6 pmid:12535668
7 Ashe K H (2007). A tale about tau. N Engl J Med , 357(9): 933–935
doi: 10.1056/NEJMcibr073552 pmid:17761598
8 Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci , 8(9): 663–672
doi: 10.1038/nrn2194 pmid:17684513
9 Baxter M G, Chiba A A (1999). Cognitive functions of the basal forebrain. Curr Opin Neurobiol , 9(2): 178–183
doi: 10.1016/S0959-4388(99)80024-5 pmid:10322180
10 Blalock E M, Geddes J W, Chen K C, Porter N M, Markesbery W R, Landfield P W (2004). Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA , 101(7): 2173–2178
doi: 10.1073/pnas.0308512100 pmid:14769913
11 Bramham C R, Milgram N W, Srebro B (1991). Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res , 567(1): 42–50
doi: 10.1016/0006-8993(91)91433-2 pmid:1667745
12 Brunden K R, Trojanowski J Q, Lee V M (2009). Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov , 8(10): 783–793
doi: 10.1038/nrd2959 pmid:19794442
13 Budde T (2006). AICD treatment in 2004—state of the art. Eur J Med Res , 11(10): 432–438
pmid:17107877
14 Caccamo A, Oddo S, Billings L M, Green K N, Martinez-Coria H, Fisher A, LaFerla F M (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron , 49(5): 671–682
doi: 10.1016/j.neuron.2006.01.020 pmid:16504943
15 Chartier-Harlin M C, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature , 353(6347): 844–846
doi: 10.1038/353844a0 pmid:1944558
16 Citron M (2010). Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov , 9(5): 387–398
doi: 10.1038/nrd2896 pmid:20431570
17 Doraiswamy P M, Xiong G L (2006). Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother , 7(1): 1–10
doi: 10.1517/14656566.7.1.1 pmid:16370917
18 El Khoury J, Toft M, Hickman S E, Means T K, Terada K, Geula C, Luster A D (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med , 13(4): 432–438
doi: 10.1038/nm1555 pmid:17351623
19 Ferraguti F, Baldani-Guerra B, Corsi M, Nakanishi S, Corti C (1999). Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur J Neurosci , 11(6): 2073–2082
doi: 10.1046/j.1460-9568.1999.00626.x pmid:10336676
20 Fisher A (2008). Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics , 5(3): 433–442
doi: 10.1016/j.nurt.2008.05.002 pmid:18625455
21 Francis R, McGrath G, Zhang J, Ruddy D A, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis M C, Parks A L, Xu W, Li J, Gurney M, Myers R L, Himes C S, Hiebsch R, Ruble C, Nye J S, Curtis D (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell , 3(1): 85–97
doi: 10.1016/S1534-5807(02)00189-2 pmid:12110170
22 Gallagher M, King R A, Young N B (1983). Opiate antagonists improve spatial memory. Science , 221(4614): 975–976
doi: 6879198" target="_blank">10.1126/science. pmid:6879198 pmid:6879198
23 Gilman A G (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem , 56(1): 615–649
doi: 10.1146/annurev.bi.56.070187.003151 pmid:3113327
24 Goate A, Chartier-Harlin M C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature , 349(6311): 704–706
doi: 10.1038/349704a0 pmid:1671712
25 Goedert M, Spillantini M G (2006). A century of Alzheimer’s disease. Science , 314(5800): 777–781
doi: 10.1126/science.1132814 pmid:17082447
26 Gomez-Isla T, Hollister R, West H, Mui S, Growdon J H, Petersen R C, Parisi J E, Hyman B T (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol , 41(1): 17–24 9005861
doi: 10.1002/ana.410410106
27 Gong C X, Iqbal K (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem , 15(23): 2321–2328
doi: 10.2174/092986708785909111 pmid:18855662
28 Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med , 15(3): 112–119
doi: 10.1016/j.molmed.2009.01.003 pmid:19246243
29 Hesselgesser J, Horuk R (1999). Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol , 5(1): 13–26
doi: 10.3109/13550289909029741 pmid:10190686
30 Hu Y, Fortini M E (2003). Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol , 161(4): 685–690
doi: 10.1083/jcb.200304014 pmid:12771124
31 Iismaa T P, Kiefer J, Liu M L, Baker E, Sutherland G R, Shine J (1994). Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics , 24(2): 391–394
doi: 10.1006/geno.1994.1635 pmid:7698767
32 Ittner L M, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, W?lfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, G?tz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell , 142(3): 387–397
doi: 10.1016/j.cell.2010.06.036 pmid:20655099
33 Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard N P, Gerard C, Hama E, Lee H J, Saido T C (2001). Metabolic regulation of brain Abeta by neprilysin. Science , 292(5521): 1550–1552
doi: 10.1126/science.1059946 pmid:11375493
34 Ladner C J, Lee J M (1998). Pharmacological drug treatment of Alzheimer disease: the cholinergic hypothesis revisited. J Neuropathol Exp Neurol , 57(8): 719–731
doi: 10.1097/00005072-199808000-00001 pmid:9720487
35 LaFerla F M, Green K N, Oddo S (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci , 8(7): 499–509
doi: 10.1038/nrn2168 pmid:17551515
36 Lee H G, Ogawa O, Zhu X, O’Neill M J, Petersen R B, Castellani R J, Ghanbari H, Perry G, Smith M A (2004). Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol , 107(4): 365–371
doi: 10.1007/s00401-004-0820-8 pmid:14872255
37 Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci , 24(1): 1121–1159
doi: 10.1146/annurev.neuro.24.1.1121 pmid:11520930
38 Lefkowitz R J (2007). Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) , 190(1): 9–19
doi: 10.1111/j.1365-201X.2007.01693.x pmid:17428228
39 Lefkowitz R J, Shenoy S K (2005). Transduction of receptor signals by beta-arrestins. Science , 308(5721): 512–517
doi: 10.1126/science.1109237 pmid:15845844
40 Leissring M A, Farris W, Chang A Y, Walsh D M, Wu X, Sun X, Frosch M P, Selkoe D J (2003). Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron , 40(6): 1087–1093
doi: 10.1016/S0896-6273(03)00787-6 pmid:14687544
41 Liu W H, Chang L S(2010). Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells BUNGARUS MULTICINCTUS PROTEASE INHIBITOR-LIKE PROTEIN-1 UNCOVERS THE CYTOTOXIC MECHANISM, J Biol Chem, 285(40): 30506–30515
42 Lleo A, Greenberg S M, Growdon J H (2006). Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med , 57(1): 513–533
doi: 10.1146/annurev.med.57.121304.131442 pmid:16409164
43 Martin Prince J J, Jackson J, eds (2010). Alzheimer’s Disease International, World Alzheimer Report 2009
44 Mathieu-Kia A M, Fan L Q, Kreek M J, Simon E J, Hiller J M (2001). Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res , 893(1-2): 121–134
doi: 10.1016/S0006-8993(00)03302-3 pmid:11223000
45 Matsuo E S, Shin R W, Billingsley M L, Van deVoorde A, O’Connor M, Trojanowski J Q, Lee V M (1994). Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron , 13(4): 989–1002
doi: 10.1016/0896-6273(94)90264-X pmid:7946342
46 Mesulam M M, Mufson E J, Wainer B H, Levey A I (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience , 10(4): 1185–1201
doi: 10.1016/0306-4522(83)90108-2 pmid:6320048
47 Mills J, Laurent Charest D, Lam F, Beyreuther K, Ida N, Pelech S L, Reiner P B (1997). Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci , 17(24): 9415–9422
pmid:9390997
48 Murrell J, Farlow M, Ghetti B, Benson M D (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science , 254(5028): 97–99
doi: 1925564" target="_blank">10.1126/science. pmid:1925564 pmid:1925564
49 Necula M, Kuret J (2004). Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem , 279(48): 49694–49703
doi: 10.1074/jbc.M405527200 pmid:15364924
50 Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006). Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med , 12(12): 1390–1396
doi: 10.1038/nm1485 pmid:17115048
51 Nitsch R M, Deng M, Growdon J H, Wurtman R J (1996). Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem , 271(8): 4188–4194
doi: 10.1074/jbc.271.8.4188 pmid:8626761
52 Phillips T, Barnes A, Scott S, Emson P, Rees S (1998). Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport , 9(10): 2335–2339
doi: 10.1097/00001756-199807130-00034 pmid:9694224
53 Pierce K L, Premont R T, Lefkowitz R J (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol , 3(9): 639–650
doi: 10.1038/nrm908 pmid:12209124
54 Qiu W Q, Ye Z, Kholodenko D, Seubert P, Selkoe D J (1997). Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J Biol Chem , 272(10): 6641–6646
doi: 10.1074/jbc.272.10.6641 pmid:9045694
55 Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman L F, Galasko D R, Jutel M, Karydas A, Kaye J A, Leszek J, Miller B L, Minthon L, Quinn J F, Rabinovici G D, Robinson W H, Sabbagh M N, So Y T, Sparks D L, Tabaton M, Tinklenberg J, Yesavage J A, Tibshirani R, Wyss-Coray T (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med , 13(11): 1359–1362
doi: 10.1038/nm1653 pmid:17934472
56 Roberson E D, Mucke L (2006). 100 years and counting: prospects for defeating Alzheimer’s disease. Science , 314(5800): 781–784
doi: 10.1126/science.1132813 pmid:17082448
57 Rogaev E I, Sherrington R, Rogaeva E A, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser P E, Rommens J M, George-Hyslop P H S (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature , 376(6543): 775–778
doi: 10.1038/376775a0 pmid:7651536
58 Russo-Neustadt A, Cotman C W (1997). Adrenergic receptors in Alzheimer’s disease brain: selective increases in the cerebella of aggressive patients. J Neurosci , 17(14): 5573–5580
pmid:9204938
59 Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang S M, Suemoto T, Higuchi M, Saido T C (2005). Somatostatin regulates brain amyloid beta peptide Aβ42 through modulation of proteolytic degradation. Nat Med , 11(4): 434–439
doi: 10.1038/nm1206 pmid:15778722
60 Selkoe D J (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev , 81(2): 741–766
pmid:11274343
61 Shahani N, Brandt R (2002). Functions and malfunctions of the tau proteins. Cell Mol Life Sci , 59(10): 1668–1680
doi: 10.1007/PL00012495 pmid:12475178
62 Sherrington R, Rogaev E I, Liang Y, Rogaeva E A, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J F, Bruni A C, Montesi M P, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky R J, Wasco W, Da Silva H A, Haines J L, Perkicak-Vance M A, Tanzi R E, Roses A D, Fraser P E, Rommens J M, St George-Hyslop P H (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature , 375(6534): 754–760
doi: 10.1038/375754a0 pmid:7596406
63 Sinha S, Anderson J P, Barbour R, Basi G S, Caccavello R, Davis D, Doan M, Dovey H F, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari S M, Wang S, Walker D, Zhao J, McConlogue L, John V (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature , 402(6761): 537–540
doi: 10.1038/990114 pmid:10591214
64 Sinha S, Lieberburg I (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci USA , 96(20): 11049–11053
doi: 10.1073/pnas.96.20.11049 pmid:10500121
65 Sisodia S S, St George-Hyslop P H (2002). gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci , 3(4): 281–290
doi: 10.1038/nrn785 pmid:11967558
66 Solano D C, Sironi M, Bonfini C, Solerte S B, Govoni S, Racchi M (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J , 14(7): 1015–1022
pmid:10783157
67 Strittmatter W J, Saunders A M, Schmechel D, Pericak-Vance M, Enghild J, Salvesen G S, Roses A D (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA , 90(5): 1977–1981
doi: 10.1073/pnas.90.5.1977 pmid:8446617
68 Tabet N, Feldman H (2002). Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst Rev , (2): CD003673
pmid:12076498
69 Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature , 422(6930): 438–441
doi: 10.1038/nature01506 pmid:12660785
70 Teng L, Zhao J, Wang F, Ma L, Pei G (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res , 20(2): 138–153
doi: 10.1038/cr.2010.3 pmid:20066010
71 Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horré K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer D F, Pollet D, De Strooper B, Merchiers P (2009). The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science , 323(5916): 946–951
doi: 10.1126/science.1160649 pmid:19213921
72 Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008). ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol , 20(9): 1181–1187
doi: 10.1093/intimm/dxn076 pmid:18635581
73 Vassar R, Bennett B D, Babu-Khan S, Kahn S, Mendiaz E A, Denis P, Teplow D B, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski M A, Biere A L, Curran E, Burgess T, Louis J C, Collins F, Treanor J, Rogers G, Citron M (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science , 286(5440): 735–741
doi: 10.1126/science.286.5440.735 pmid:10531052
74 Watanabe N, Tomita T, Sato C, Kitamura T, Morohashi Y, Iwatsubo T (2005). Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. J Biol Chem , 280(51): 41967–41975
doi: 10.1074/jbc.M509066200 pmid:16234244
75 Wyss-Coray T (2006). Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med , 12(9): 1005–1015
pmid:16960575
[1] Kavya Krishnappa, Naveen Kumar Mallesh, Srikantaradhya Chidananda Sharma, Doddamane Manjulakumari. Midostaurin inhibits hormone-refractory prostate cancer PC-3 cells by modulating nPKCs and AP-1 transcription factors and their target genes involved in cell cycle[J]. Front. Biol., 2017, 12(6): 421-429.
[2] Jorge A. LARIOS, Maria-Paz MARZOLO. Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing[J]. Front Biol, 2012, 7(2): 113-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed