Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (4) : 307-312    https://doi.org/10.1007/s11515-012-1023-7
REVIEW
Significance of the potential role of pharmacological MRI (phMRI) in diagnosis of Parkinson’s disease
Feng YUE1, Piu CHAN1, Zhiming ZHANG2()
1. Department of Neurobiology and Neurology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China; 2. Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The initial diagnosis of Parkinson’s disease (PD) is currently based on a clinical assessment. Many patients who receive an initial diagnosis of PD have parkinsonian features related to other diseases such as essential tremor, vascular parkinsonism and atypical parkinsonian disorder. It has been challenging to differentiate PD from those disorders, especially in the early disease stages, due to an overlap of clinical signs and symptoms. Therefore, there is a great need for development of noninvasive, highly sensitive, and widely available imaging methods that can potentially be used to assistant physicians to make more accurate diagnosis of the disease; and to longitudinally monitor treatment of PD. Recent advance of pharmacological MRI (phMRI) technology allows non-invasively mapping functional stages for nigrostriatal dopamine (DA) system. This article aims to review research findings primarily from our group in nonhuman primates modeling the neurodegenerative disease on the value of phMRI techniques in the diagnosis of PD.

Keywords pharmacological MRI (phMRI)      Parkinson’s disease      phMRI techniques     
Corresponding Author(s): ZHANG Zhiming,Email:zzhan01@uky.edu   
Issue Date: 01 August 2012
 Cite this article:   
Feng YUE,Piu CHAN,Zhiming ZHANG. Significance of the potential role of pharmacological MRI (phMRI) in diagnosis of Parkinson’s disease[J]. Front Biol, 2012, 7(4): 307-312.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1023-7
https://academic.hep.com.cn/fib/EN/Y2012/V7/I4/307
Fig.1  phMRI reveals nigrostriatal system responsiveness to dopamine stimulation. Coronal MRI scans depicting areas of activation and deactivation (represented by the psedudocolor) in the brain after an APO or amphetamine challenge in unitalteral MPTP-lesioned nonhuman primates ().
Fig.2  phMRI responses in the nigrostriatal system. Depending on the means of stimulation, phMRI reveals a differential activations and deactivations in the nigrostriatal system. After APO stimulation (A-D) or d-amphetamine stimulation (E-H). **: <0.01; *: <0.05; unpaired -test ().
Fig.3  Lower TH fiber density in the ipsilesional putamen corresponds with higher phMRI activation. TH fiber density in the right putamen (R-Put) is inversely correlated with phMRI activation in the right motor cortex (R-MC) (A) and the right caudate nucleus (R-CD) (B).
Fig.4  Hemiparkinsonian nonhuman primates have markedly diminished dopaminergic function. K (100 mM)- and amphetamine (250 μM)-evoked DA release was significantly attenuated in the ipsilesional (A) putamen (Put) and (B) SNc; ***:<0.0001 (paired -test).
Fig.5  DA levels in the right SNc correlate with the BOLD responses in the right motor cortex. In animals with lower DA levels in the right SNc, less activation was observed in the right motor cortex
1 Andersen A H, Zhang Z, Barber T, Rayens W S, Zhang J, Grondin R, Hardy P, Gerhardt G A, Gash D M (2002). Functional MRI studies in awake rhesus monkeys: methodological and analytical strategies. J Neurosci Methods , 118(2): 141-152
doi: 10.1016/S0165-0270(02)00123-1 pmid:12204305
2 Arthurs O J, Boniface S (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci , 25(1):27-31
3 Braak H, Del Tredici K (2008). Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol , 212(1): 226-229
doi: 10.1016/j.expneurol.2008.04.001 pmid:18501351
4 Chen Q, Andersen A H, Zhang Z, Ovadia A, Gash D M, Avison M J (1996). Mapping drug-induced changes in cerebral R2* by Multiple Gradient Recalled Echo functional MRI. Magn Reson Imaging , 14(5): 469-476
doi: 10.1016/0730-725X(95)02100-8 pmid:8843359
5 Chin C L, Tovcimak A E, Hradil V P, Seifert T R, Hollingsworth P R, Chandran P, Zhu C Z, Gauvin D, Pai M, Wetter J, Hsieh G C, Honore P, Frost J M, Dart M J, Meyer M D, Yao B B, Cox B F, Fox G B (2008). Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br J Pharmacol , 153(2): 367-379
doi: 10.1038/sj.bjp.0707506 pmid:17965748
6 Ding F, Luan L, Ai Y, Walton A, Gerhardt G A, Gash D M, Grondin R, Zhang Z (2008). Development of a stable, early stage unilateral model of Parkinson’s disease in middle-aged rhesus monkeys. Exp Neurol , 212(2): 431-439
doi: 10.1016/j.expneurol.2008.04.027 pmid:18547564
7 Fearnley J M, Lees A J (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain , 114(5): 2283-2301
doi: 10.1093/brain/114.5.2283 pmid:1933245
8 Honey G, Bullmore E (2004). Human pharmacological MRI. Trends Pharmacol Sci , 25(7): 366-374
doi: 10.1016/j.tips.2004.05.009 pmid:15219979
9 Jenkins B G, Sanchez-Pernaute R, Brownell A L, Chen Y C, Isacson O (2004). Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci , 24(43): 9553-9560
doi: 10.1523/JNEUROSCI.1558-04.2004 pmid:15509742
10 Langston J W, Ballard P A Jr (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med , 309(5): 310-321
doi: 10.1056/NEJM198308043090511 pmid:6602944
11 Nguyen T V, Brownell A L, Iris Chen Y C, Livni E, Coyle J T, Rosen B R, Cavagna F, Jenkins B G (2000). Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse , 36(1): 57-65
doi: 10.1002/(SICI)1098-2396(200004)36:1&lt;57::AID-SYN6&gt;3.0.CO;2-K pmid:10700026
12 Nicklas W J, Youngster S K, Kindt M V, Heikkila R E (1987). MPTP, MPP+ and mitochondrial function. Life Sci , 40(8): 721-729
doi: 10.1016/0024-3205(87)90299-2 pmid:3100899
13 Pavese N, Brooks D J (2009). Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta , 1792(7): 722-729
pmid:18992326
14 Rasmussen I Jr (2010). Psychopharmacological MRI. Acta Neuropsychiatr , 22(1): 38-39
doi: 10.1111/j.1601-5215.2009.00432.x
15 Richardson J R, Caudle W M, Guillot T S, Watson J L, Nakamaru-Ogiso E, Seo B B, Sherer T B, Greenamyre J T, Yagi T, Matsuno-Yagi A, Miller G W (2007). Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci , 95(1): 196-204
doi: 10.1093/toxsci/kfl133 pmid:17038483
16 Thiel C M (2009). Neuropharmacological fMRI. Neuropharmakologisches fMRT , 40: 233-238
17 Tracey I (2001). Prospects for human pharmacological functional magnetic resonance imaging (phMRI). J Clin Pharmacol , Suppl: 21S-28S
pmid:11452725
18 Wu Y, Le W, Jankovic J (2011). Preclinical biomarkers of Parkinson disease. Arch Neurol , 68(1): 22-30
doi: 10.1001/archneurol.2010.321 pmid:21220674
19 Zhang Z, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, Gash D (2001). Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage , 14(5): 1159-1167
doi: 10.1006/nimg.2001.0902 pmid:11697947
20 Zhang Z, Andersen A H, Ai Y, Loveland A, Hardy P A, Gerhardt G A, Gash D M (2006). Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage , 33, 636-643
[1] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[2] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
[3] Yingjun LIU, Jiawei ZHOU. Oligodendrocytes in neurodegenerative diseases[J]. Front Biol, 2013, 8(2): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed