Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (2) : 104-113    https://doi.org/10.1007/s11515-014-1302-6
REVIEW
Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition
Caiguo ZHANG,Guoqi LIU,Mingxia HUANG()
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
 Download: PDF(253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ribonucleotide reductase (RNR) supplies cellular deoxyribonucleotide triphosphates (dNTP) pools by converting ribonucleotides to the corresponding deoxy forms using radical-based chemistry. Eukaryotic RNR comprises α and β subunits: α contains the catalytic and allosteric sites; β houses a diferric-tyrosyl radical cofactor (FeIII2-Y•) that is required to initiates nucleotide reduction in α. Cells have evolved multi-layered mechanisms to regulate RNR level and activity in order to maintain the adequate sizes and ratios of their dNTP pools to ensure high-fidelity DNA replication and repair. The central role of RNR in nucleotide metabolism also makes it a proven target of chemotherapeutics. In this review, we discuss recent progress in understanding the function and regulation of eukaryotic RNRs, with a focus on studies revealing the cellular machineries involved in RNR metallocofactor biosynthesis and its implication in RNR-targeting therapeutics.

Keywords ribonucleotide reductase (RNR)      diferric-tyrosyl radical (FeIII2-Y•)      iron homeostasis     
Corresponding Author(s): Mingxia HUANG   
Issue Date: 13 May 2014
 Cite this article:   
Caiguo ZHANG,Guoqi LIU,Mingxia HUANG. Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition[J]. Front. Biol., 2014, 9(2): 104-113.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1302-6
https://academic.hep.com.cn/fib/EN/Y2014/V9/I2/104
Fig.1  The proposed pathways forbiosynthesis and maintenance of the FeIII2-Y•cofactor of class Ia RNR. The biosynthetic pathway requires delivery of two FeII and a reducing equivalent (electron) per β subunit to carry out the four-electron reduction of O2 to H2O (Eq. (1)).The other three electrons come from the two FeII and Tyr residue to form the FeIII2-Y•. The maintenance pathway may use the same source of reducing equivalents to convert the inactive FeIII2-Y cluster to FeII2-Y, which subsequently forms FeIII2-Y• in the presence of O2 via the biosynthetic pathway.
Fig.2  A model depicting the role of the Dre2-Tah18 complex as the electron donor for cluster assembly in both RNR and in cytosolic and nuclear Fe-S cluster containing proteins. Grx3/4 is the source of iron for all cellular iron-requiring pathways including Fe-S cluster assembly in mitochondria (ISC) and cytosol (CIA), and FeIII2-Y•assembly in RNR (Mühlenhoff et al., 2010). Electrons from NADPH are transferred via FAD and FMN, the two flavin cofactors in Tah18, to the Fe-S cluster(s) in Dre2, which subsequently deliver the electrons to proteins in the CIA pathway and β in RNR. Dre2-Tah18 may also provide reducing equivalents to facilitate iron release from the [2Fe2S]-GSH2 cluster in the Grx3/Grx4 dimer (Zhang et al., 2011).
1 AllenJ B, ZhouZ, SiedeW, FriedbergE C, ElledgeS J (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev, 8(20): 2401–2415
doi: 10.1101/gad.8.20.2401 pmid: 7958905
2 AtkinC L, ThelanderL, ReichardP, LangG (1973). Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J Biol Chem, 248(21): 7464–7472
pmid: 4355582
3 AyeY, BrignoleE J, LongM J, ChittuluruJ, DrennanC L, AsturiasF J, StubbeJ (2012a). Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol, 19(7): 799–805
doi: 10.1016/j.chembiol.2012.05.015 pmid: 22840768
4 AyeY, LongM J, StubbeJ (2012b). Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J Biol Chem, 287(42): 35768–35778
doi: 10.1074/jbc.M112.396911 pmid: 22915594
5 BarlowT, EliassonR, PlatzA, ReichardP, SjöbergB M (1983). Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc Natl Acad Sci USA, 80(6): 1492–1495
doi: 10.1073/pnas.80.6.1492 pmid: 6300856
6 BianchiV, PontisE, ReichardP (1986). Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem, 261(34): 16037–16042
pmid: 3536919
7 BjörklundS, SkogS, TribukaitB, ThelanderL (1990). S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry, 29(23): 5452–5458
doi: 10.1021/bi00475a007 pmid: 1696835
8 BoehmerP E, LehmanI R (1997). Herpes simplex virus DNA replication. Annu Rev Biochem, 66(1): 347–384
doi: 10.1146/annurev.biochem.66.1.347 pmid: 9242911
9 BollingerJ M Jr, EdmondsonD E, HuynhB H, FilleyJ, NortonJ R, StubbeJ (1991). Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science, 253(5017): 292–298
doi: 10.1126/science. pmid: 1650033
10 BollingerJ M Jr, JiangW, GreenM T, KrebsC (2008). The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Curr Opin Struct Biol, 18(6): 650–657
doi: 10.1016/j.sbi.2008.11.007 pmid: 19046875
11 BollingerJ M Jr, TongW H, RaviN, HuynhB H, EdmondsonD E, StubbeJ A (1995). Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase. Methods Enzymol, 258: 278–303
doi: 10.1016/0076-6879(95)58052-2 pmid: 8524156
12 BrockmanR W, ShaddixS, LasterW R Jr, SchabelF M Jr (1970). Inhibition of ribonucleotide reductase, DNA synthesis, and L1210 leukemia by guanazole. Cancer Res, 30(9): 2358–2368
pmid: 5475481
13 BurrellR A, McClellandS E, EndesfelderD, GrothP, WellerM C, ShaikhN, DomingoE, KanuN, DewhurstS M, GronroosE, ChewS K, RowanA J, SchenkA, ShefferM, HowellM, KschischoM, BehrensA, HelledayT, BartekJ, TomlinsonI P, SwantonC (2013). Replication stress links structural and numerical cancer chromosomal instability. Nature, 494(7438): 492–496
doi: 10.1038/nature11935 pmid: 23446422
14 BussJ L, TortiF M, TortiS V (2003). The role of iron chelation in cancer therapy. Curr Med Chem, 10(12): 1021–1034
doi: 10.2174/0929867033457638 pmid: 12678674
15 CairnsR A, HarrisI S, MakT W (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2): 85–95
doi: 10.1038/nrc2981 pmid: 21258394
16 CampestreC, AgamennoneM, TortorellaP, PreziusoS, BiasoneA, GavuzzoE, PochettiG, MazzaF, HillerO, TschescheH, ConsalviV, GallinaC (2006). N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: mode of binding in a complex with MMP-8. Bioorg Med Chem Lett, 16(1): 20–24
doi: 10.1016/j.bmcl.2005.09.057 pmid: 16242329
17 CerqueiraN M, FernandesP A, RamosM J (2007). Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Recent Patents Anticancer Drug Discov, 2(1): 11–29
doi: 10.2174/157489207779561408 pmid: 18221051
18 ChabesA, GeorgievaB, DomkinV, ZhaoX, RothsteinR, ThelanderL (2003a). Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell, 112(3): 391–401
doi: 10.1016/S0092-8674(03)00075-8 pmid: 12581528
19 ChabesA, ThelanderL (2003). DNA building blocks at the foundation of better survival. Cell Cycle, 2(3): 171–173
doi: 10.4161/cc.2.3.354 pmid: 12734415
20 ChabesA L, PflegerC M, KirschnerM W, ThelanderL (2003b). Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA, 100(7): 3925–3929
doi: 10.1073/pnas.0330774100 pmid: 12655059
21 ChaboutéM E, ClémentB, PhilippsG (2002). S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem, 277(20): 17845–17851
doi: 10.1074/jbc.M200959200 pmid: 11884409
22 ChaboutéM E, ClémentB, SekineM, PhilippsG, Chaubet-GigotN (2000). Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell, 12(10): 1987–2000
pmid: 11041892
23 ChastonT B, LovejoyD B, WattsR N, RichardsonD R (2003). Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin Cancer Res, 9(1): 402–414
pmid: 12538494
24 ChastonT B, RichardsonD R (2003). Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol, 73(3): 200–210
doi: 10.1002/ajh.10348 pmid: 12827659
25 ClimentI, SjöbergB M, HuangC Y (1991). Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry, 30(21): 5164–5171
doi: 10.1021/bi00235a008 pmid: 2036382
26 CotruvoJ A Jr, StubbeJ (2010). An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry, 49(6): 1297–1309
doi: 10.1021/bi902106n pmid: 20070127
27 CotruvoJ A Jr, StubbeJ (2011). Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem, 80(1): 733–767
doi: 10.1146/annurev-biochem-061408-095817 pmid: 21456967
28 CovesJ, ZeghoufM, MacherelD, GuigliarelliB, AssoM, FontecaveM (1997). Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry, 36(19): 5921–5928
doi: 10.1021/bi9623744 pmid: 9153434
29 D’AngiolellaV, DonatoV, ForresterF M, JeongY T, PellacaniC, KudoY, SarafA, FlorensL, WashburnM P, PaganoM (2012). Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell, 149(5): 1023–1034
doi: 10.1016/j.cell.2012.03.043 pmid: 22632967
30 DaviesB W, KohanskiM A, SimmonsL A, WinklerJ A, CollinsJ J, WalkerG C (2009). Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell, 36(5): 845–860
doi: 10.1016/j.molcel.2009.11.024 pmid: 20005847
31 DayaniP N, BishopM C, BlackK, ZeltzerP M (2004). Desferoxamine (DFO)—mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol, 67(3): 367–377
doi: 10.1023/B:NEON.0000024238.21349.37 pmid: 15164994
32 DonehowerR C (1992). An overview of the clinical experience with hydroxyurea. Semin Oncol, 19(3 Suppl 9): 11–19
pmid: 1641651
33 EklundH, UhlinU, FärnegårdhM, LoganD T, NordlundP (2001). Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol, 77(3): 177–268
doi: 10.1016/S0079-6107(01)00014-1 pmid: 11796141
34 ElledgeS J, ZhouZ, AllenJ B, NavasT A (1993). DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays, 15: 333–339
35 EnyedyE A, PrimikM F, KowolC R, ArionV B, KissT, KepplerB K (2011). Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study. Dalton Trans, 40(22): 5895–5905
doi: 10.1039/c0dt01835j pmid: 21523301
36 FanH, VillegasC, HuangA, WrightJ A (1998). The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res, 58(8): 1650–1653
pmid: 9563477
37 FinchR A, LiuM C, CoryA H, CoryJ G, SartorelliA C (1999). Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity. Adv Enzyme Regul, 39(1): 3–12
doi: 10.1016/S0065-2571(98)00017-X pmid: 10470363
38 FishbeinW N, CarboneP P (1963). Hydroxyurea: Mechanism of Action. Science, 142(3595): 1069–1070
doi: 10.1126/science.142.3595.1069 pmid: 14068223
39 FontecaveM, EliassonR, ReichardP (1987). NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem, 262(25): 12325–12331
pmid: 3305505
40 FontecaveM, EliassonR, ReichardP (1989). Enzymatic regulation of the radical content of the small subunit of Escherichia coli ribonucleotide reductase involving reduction of its redox centers. J Biol Chem, 264(16): 9164–9170
pmid: 2656697
41 FontecaveM, MulliezE, LoganD T (2002). Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog Nucleic Acid Res Mol Biol, 72: 95–127
doi: 10.1016/S0079-6603(02)72068-0 pmid: 12206460
42 GwiltP R, TracewellW G (1998). Pharmacokinetics and pharmacodynamics of hydroxyurea. Clin Pharmacokinet, 34(5): 347–358
doi: 10.2165/00003088-199834050-00002 pmid: 9592619
43 HalimiY, DessauM, PollakS, AstT, ErezT, Livnat-LevanonN, KarniolB, HirschJ A, ChamovitzD A (2011). COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2). Plant Mol Biol, 77(1-2): 77–89
doi: 10.1007/s11103-011-9795-8 pmid: 21614643
44 HanahanD, WeinbergR A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674
doi: 10.1016/j.cell.2011.02.013 pmid: 21376230
45 HaoZ, QiaoT, JinX, LiX, GaoJ, FanD (2005). Preparation and characterization of a specific monoclonal antibody against CIAPIN1. Hybridoma (Larchmt), 24(3): 141–145
doi: 10.1089/hyb.2005.24.141 pmid: 15943561
46 HarperJ W, ElledgeS J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745
doi: 10.1016/j.molcel.2007.11.015 pmid: 18082599
47 HaunhorstP, HanschmannE M, BräutigamL, StehlingO, HoffmannB, MühlenhoffU, LillR, BerndtC, LilligC H (2013). Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol Biol Cell, 24(12): 1895–1903
doi: 10.1091/mbc.E12-09-0648 pmid: 23615448
48 HoferA, CronaM, LoganD T, SjöbergB M (2012). DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol, 47(1): 50–63
doi: 10.3109/10409238.2011.630372 pmid: 22050358
49 HristovaD, WuC H, JiangW, KrebsC, StubbeJ (2008). Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry, 47(13): 3989–3999
doi: 10.1021/bi702408k pmid: 18314964
50 HuC M, YehM T, TsaoN, ChenC W, GaoQ Z, ChangC Y, LeeM H, FangJ M, SheuS Y, LinC J, TsengM C, ChenY J, ChangZ F (2012). Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell, 22(1): 36–50
doi: 10.1016/j.ccr.2012.04.038 pmid: 22789537
51 HuangM, ElledgeS J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113
pmid: 9315670
52 JiangW, YunD, SalehL, BarrE W, XingG, HoffartL M, MaslakM A, KrebsC, BollingerJ M Jr (2007). A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science, 316(5828): 1188–1191
doi: 10.1126/science.1141179 pmid: 17525338
53 JohnsD G, GaoW Y (1998). Selective depletion of DNA precursors: an evolving strategy for potentiation of dideoxynucleoside activity against human immunodeficiency virus. Biochem Pharmacol, 55(10): 1551–1556
pmid: 9633990
54 JordanA, ReichardP (1998). Ribonucleotide reductases. Annu Rev Biochem, 67(1): 71–98
doi: 10.1146/annurev.biochem.67.1.71 pmid: 9759483
55 KaplanJ, McVey WardD, CrispR J, PhilpottC C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651
doi: 10.1016/j.bbamcr.2006.03.008 pmid: 16697062
56 KashlanO B, CoopermanB S (2003). Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry, 42(6): 1696–1706
doi: 10.1021/bi020634d pmid: 12578384
57 KeP Y, KuoY Y, HuC M, ChangZ F (2005). Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev, 19(16): 1920–1933
doi: 10.1101/gad.1322905 pmid: 16103219
58 KennedyB J (1992). The evolution of hydroxyurea therapy in chronic myelogenous leukemia. Semin Oncol, 19(3 Suppl 9): 21–26
pmid: 1641653
59 KolbergM, StrandK R, GraffP, AnderssonK K (2004). Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta, 1699(1-2): 1–34
doi: 10.1016/j.bbapap.2004.02.007 pmid: 15158709
60 KumarD, VibergJ, NilssonA K, ChabesA (2010). Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res, 38(12): 3975–3983
doi: 10.1093/nar/gkq128 pmid: 20215435
61 KunkelT A, SilberJ R, LoebL A (1982). The mutagenic effect of deoxynucleotide substrate imbalances during DNA synthesis with mammalian DNA polymerases. Mutat Res, 94(2): 413–419
doi: 10.1016/0027-5107(82)90304-9 pmid: 6213856
62 KunosC, RadivoyevitchT, Abdul-KarimF W, FanningJ, AbulafiaO, BonebrakeA J, UshaL (2012). Ribonucleotide reductase inhibition restores platinum-sensitivity in platinum-resistant ovarian cancer: a Gynecologic Oncology Group Study. J Transl Med, 10(1): 79
doi: 10.1186/1479-5876-10-79 pmid: 22541066
63 KuritaJ, NakajimaK (2012). Megalocytiviruses. Viruses, 4(4): 521–538
doi: 10.3390/v4040521 pmid: 22590684
64 LassmannG, ThelanderL, GräslundA (1992). EPR stopped-flow studies of the reaction of the tyrosyl radical of protein R2 from ribonucleotide reductase with hydroxyurea. Biochem Biophys Res Commun, 188(2): 879–887
doi: 10.1016/0006-291X(92)91138-G pmid: 1332707
65 LeeY D, WangJ, StubbeJ, ElledgeS J (2008). Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell, 32(1): 70–80
doi: 10.1016/j.molcel.2008.08.018 pmid: 18851834
66 LillR, HoffmannB, MolikS, PierikA J, RietzschelN, StehlingO, UzarskaM A, WebertH, WilbrechtC, MühlenhoffU (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508
doi: 10.1016/j.bbamcr.2012.05.009 pmid: 22609301
67 LiuC, PowellK A, MundtK, WuL, CarrA M, CaspariT (2003). Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev, 17(9): 1130–1140
doi: 10.1101/gad.1090803 pmid: 12695334
68 LiuX, ZhouB, XueL, YenF, ChuP, UnF, YenY (2007). Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer, 6(5): 374–381
doi: 10.3816/CCC.2007.n.007 pmid: 17311703
69 LoebL A, KunkelT A (1982). Fidelity of DNA synthesis. Annu Rev Biochem, 51(1): 429–457
doi: 10.1146/annurev.bi.51.070182.002241 pmid: 6214209
70 LoganD T, MulliezE, LarssonK M, BodevinS, AttaM, GarnaudP E, SjobergB M, FontecaveM (2003). A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase. Proc Natl Acad Sci USA, 100(7): 3826–3831
doi: 10.1073/pnas.0736456100 pmid: 12655046
71 LovejoyD B, RichardsonD R (2003). Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr Med Chem, 10(12): 1035–1049
doi: 10.2174/0929867033457557 pmid: 12678675
72 MadaanK, KaushikD, VermaT (2012). Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther, 12(1): 19–29
doi: 10.1586/era.11.175 pmid: 22149429
73 MathewsC K (2006). DNA precursor metabolism and genomic stability. FASEB J, 20: 1300–1314
74 MayhewC N, SumpterR, InayatM, CibullM, PhillipsJ D, ElfordH L, GallicchioV S (2005). Combination of inhibitors of lymphocyte activation (hydroxyurea, trimidox, and didox) and reverse transcriptase (didanosine) suppresses development of murine retrovirus-induced lymphoproliferative disease. Antiviral Res, 65(1): 13–22
doi: 10.1016/j.antiviral.2004.09.003 pmid: 15652967
75 MinnihanE C, AndoN, BrignoleE J, OlshanskyL, ChittuluruJ, AsturiasF J, DrennanC L, NoceraD G, StubbeJ (2013a). Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc Natl Acad Sci USA, 110(10): 3835–3840
doi: 10.1073/pnas.1220691110 pmid: 23431160
76 MinnihanE C, NoceraD G, StubbeJ (2013b). Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res, 46(11): 2524–2535
doi: 10.1021/ar4000407 pmid: 23730940
77 MiyajimaH, TakahashiY, KamataT, ShimizuH, SakaiN, GitlinJ D (1997). Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol, 41(3): 404–407
doi: 10.1002/ana.410410318 pmid: 9066364
78 MowaM B, WarnerD F, KaplanG, KanaB D, MizrahiV (2009). Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol, 191(3): 985–995
doi: 10.1128/JB.01409-08 pmid: 19028890
79 MühlenhoffU, MolikS, GodoyJ R, UzarskaM A, RichterN, SeubertA, ZhangY, StubbeJ, PierrelF, HerreroE, LilligC H, LillR (2010). Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab, 12(4): 373–385
doi: 10.1016/j.cmet.2010.08.001 pmid: 20889129
80 NakanoK, BálintE, AshcroftM, VousdenK H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289
doi: 10.1038/sj.onc.1203774 pmid: 10980602
81 NetzD J, StümpfigM, DoréC, MühlenhoffU, PierikA J, LillR (2010). Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol, 6(10): 758–765
doi: 10.1038/nchembio.432 pmid: 20802492
82 NiidaH, KatsunoY, SengokuM, ShimadaM, YukawaM, IkuraM, IkuraT, KohnoK, ShimaH, SuzukiH, TashiroS, NakanishiM (2010). Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev, 24(4): 333–338
doi: 10.1101/gad.1863810 pmid: 20159953
83 NordlundP, ReichardP (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706
doi: 10.1146/annurev.biochem.75.103004.142443 pmid: 16756507
84 NyholmS, ThelanderL, GräslundA (1993). Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry, 32(43): 11569–11574
doi: 10.1021/bi00094a013 pmid: 8218224
85 OffenbacherA R, VassilievI R, SeyedsayamdostM R, StubbeJ, BarryB A (2009). Redox-linked structural changes in ribonucleotide reductase. J Am Chem Soc, 131(22): 7496–7497
doi: 10.1021/ja901908j pmid: 19489635
86 OrmöM, deMaréF, RegnströmK, AbergA, SahlinM, LingJ, LoehrT M, Sanders-LoehrJ, SjöbergB M (1992). Engineering of the iron site in ribonucleotide reductase to a self-hydroxylating monooxygenase. J Biol Chem, 267(13): 8711–8714
pmid: 1577712
87 OrtigosaA D, HristovaD, PerlsteinD L, ZhangZ, HuangM, StubbeJ (2006). Determination of the in vivo stoichiometry of tyrosyl radical per betabeta’ in Saccharomyces cerevisiae ribonucleotide reductase. Biochemistry, 45(40): 12282–12294
doi: 10.1021/bi0610404 pmid: 17014081
88 PollycoveM, MaqsoodM (1962). Existence of an erythropoietic labile iron pool in animals. Nature, 194(4824): 152–154
doi: 10.1038/194152a0 pmid: 14487670
89 Pujol-CarrionN, BelliG, HerreroE, NoguesA, de la Torre-RuizM A (2006). Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci, 119(Pt 21): 4554–4564
doi: 10.1242/jcs.03229 pmid: 17074835
90 ReeceS Y, HodgkissJ M, StubbeJ, NoceraD G (2006). Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci, 361(1472): 1351–1364
doi: 10.1098/rstb.2006.1874 pmid: 16873123
91 ReichardP (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem, 57(1): 349–374
doi: 10.1146/annurev.bi.57.070188.002025 pmid: 3052277
92 ReichardP (1993). From RNA to DNA, why so many ribonucleotide reductases? Science, 260(5115): 1773–1777
doi: 10.1126/science. pmid: 8511586
93 RenS, WangR, KomatsuK, Bonaz-KrauseP, ZyrianovY, McKennaC E, CsipkeC, TokesZ A, LienE J (2002). Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem, 45(2): 410–419
doi: 10.1021/jm010252q pmid: 11784145
94 RichardsonD R, KalinowskiD S, RichardsonV, SharpeP C, LovejoyD B, IslamM, BernhardtP V (2009). 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity. J Med Chem, 52(5): 1459–1470
doi: 10.1021/jm801585u pmid: 19216562
95 RofougaranR, VodnalaM, HoferA (2006). Enzymatically active mammalian ribonucleotide reductase exists primarily as an alpha6beta2 octamer. J Biol Chem, 281(38): 27705–27711
doi: 10.1074/jbc.M605573200 pmid: 16861739
96 RouaultT, KlausnerR (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19
doi: 10.1016/S0070-2137(97)80001-5 pmid: 9192174
97 SaitoY, ShibayamaH, TanakaH, TanimuraA, MatsumuraI, KanakuraY (2011). PICOT is a molecule which binds to anamorsin. Biochem Biophys Res Commun, 408(2): 329–333
doi: 10.1016/j.bbrc.2011.04.033 pmid: 21513700
98 SaldivarJ C, MiumaS, BeneJ, HosseiniS A, ShibataH, SunJ, WheelerL J, MathewsC K, HuebnerK (2012). Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet, 8(11): e1003077
doi: 10.1371/journal.pgen.1003077 pmid: 23209436
99 SaloweS, BollingerJ M Jr, AtorM, StubbeJ, McCrakenJ, PeisachJ, SamanoM C, RobinsM J (1993). Alternative model for mechanism-based inhibition of Escherichia coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine 5′-diphosphate. Biochemistry, 32(47): 12749–12760
doi: 10.1021/bi00210a026 pmid: 8251496
100 SanvisensN, de LlanosR, PuigS (2013). Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomed J, 36: 51–58
101 ScozzafavaA, SupuranC T (2003). Hydroxyurea is a carbonic anhydrase inhibitor. Bioorg Med Chem, 11(10): 2241–2246
doi: 10.1016/S0968-0896(03)00112-3 pmid: 12713833
102 ShaoJ, LiuX, ZhuL, YenY (2013). Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets, 17(12): 1423–1437
doi: 10.1517/14728222.2013.840293 pmid: 24083455
103 ShaoJ, ZhouB, Di BilioA J, ZhuL, WangT, QiC, ShihJ, YenY (2006). A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol Cancer Ther, 5(3): 586–592
doi: 10.1158/1535-7163.MCT-05-0384 pmid: 16546972
104 ShaoJ, ZhouB, ZhuL, QiuW, YuanY C, XiB, YenY (2004). In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res, 64(1): 1–6
doi: 10.1158/0008-5472.CAN-03-3048 pmid: 14729598
105 ShibayamaH, TakaiE, MatsumuraI, KounoM, MoriiE, KitamuraY, TakedaJ, KanakuraY (2004). Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med, 199(4): 581–592
doi: 10.1084/jem.20031858 pmid: 14970183
106 SjöbergB M, ReichardP (1977). Nature of the free radical in ribonucleotide reductase from Escherichia coli. J Biol Chem, 252(2): 536–541
pmid: 188819
107 SongS, PursellZ F, CopelandW C, LongleyM J, KunkelT A, MathewsC K (2005). DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci USA, 102(14): 4990–4995
doi: 10.1073/pnas.0500253102 pmid: 15784738
108 SouglakosJ, BoukovinasI, TaronM, MendezP, MavroudisD, TripakiM, HatzidakiD, KoutsopoulosA, StathopoulosE, GeorgouliasV, RosellR (2008). Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer, 98(10): 1710–1715
doi: 10.1038/sj.bjc.6604344 pmid: 18414411
109 StubbeJ (2003). Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol, 7(2): 183–188
doi: 10.1016/S1367-5931(03)00025-5 pmid: 12714050
110 StubbeJ, CotruvoJ A Jr (2011). Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Curr Opin Chem Biol, 15(2): 284–290
doi: 10.1016/j.cbpa.2010.12.001 pmid: 21216656
111 StubbeJ, GeJ, YeeC S (2001). The evolution of ribonucleotide reduction revisited. Trends Biochem Sci, 26(2): 93–99
doi: 10.1016/S0968-0004(00)01764-3 pmid: 11166566
112 StubbeJ, van Der DonkW A (1998). Protein Radicals in Enzyme Catalysis. Chem Rev, 98(2): 705–762
doi: 10.1021/cr9400875 pmid: 11848913
113 TanakaH, ArakawaH, YamaguchiT, ShiraishiK, FukudaS, MatsuiK, TakeiY, NakamuraY (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404(6773): 42–49
doi: 10.1038/35003506 pmid: 10716435
114 ThelanderL, GräslundA, ThelanderM (1983). Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem Biophys Res Commun, 110(3): 859–865
doi: 10.1016/0006-291X(83)91040-9 pmid: 6340669
115 WangJ, LohmanG J, StubbeJ (2007). Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. Proc Natl Acad Sci USA, 104(36): 14324–14329
doi: 10.1073/pnas.0706803104 pmid: 17726094
116 WhiteM F, DillinghamM S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100
doi: 10.1016/j.sbi.2011.11.004 pmid: 22169085
117 WillingA, FollmannH, AulingG (1988). Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur J Bio, 170: 603–611
118 WuC H, JiangW, KrebsC, StubbeJ (2007). YfaE, a ferredoxin involved in diferric-tyrosyl radical maintenance in Escherichia coli ribonucleotide reductase. Biochemistry, 46(41): 11577–11588
doi: 10.1021/bi7012454 pmid: 17880186
119 WuX, HuangM (2008). Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol, 28(23): 7156–7167
doi: 10.1128/MCB.01388-08 pmid: 18838542
120 XueL, ZhouB, LiuX, QiuW, JinZ, YenY (2003). Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res, 63(5): 980–986
pmid: 12615712
121 YangF D, SpanevelloR A, CelikerI, HirschmannR, RubinH, CoopermanB S (1990). The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit. FEBS Lett, 272(1-2): 61–64
doi: 10.1016/0014-5793(90)80449-S pmid: 2226836
122 YaoR, ZhangZ, AnX, BucciB, PerlsteinD L, StubbeJ, HuangM (2003). Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA, 100(11): 6628–6633
doi: 10.1073/pnas.1131932100 pmid: 12732713
123 YeH, RouaultT A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956
doi: 10.1021/bi1004798 pmid: 20481466
124 YenY, GrillS P, DutschmanG E, ChangC N, ZhouB S, ChengY C (1994). Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine. Cancer Res, 54(14): 3686–3691
pmid: 7518343
125 YuY, WongJ, LovejoyD B, KalinowskiD S, RichardsonD R (2006). Chelators at the cancer coalface: desferrioxamine to Triapine and beyond. Clin Cancer Res, 12(23): 6876–6883
doi: 10.1158/1078-0432.CCR-06-1954 pmid: 17145804
126 ZeidnerJ F, KarpJ E, BlackfordA L, SmithB D, GojoI, GoreS D, LevisM J, CarrawayH E, GreerJ M, IvyS P, PratzK W, McDevittM A (2013). Phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica,
doi: 10.3324/haematol.2013.097246 pmid: 24362550
127 ZhangY, LiuL, WuX, AnX, StubbeJ, HuangM (2011). Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J Biol Chem, 286(48): 41499–41509
doi: 10.1074/jbc.M111.294074 pmid: 21931161
128 ZhangY, LyverE R, Nakamaru-OgisoE, YoonH, AmuthaB, LeeD W, BiE, OhnishiT, DaldalF, PainD, DancisA (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582
doi: 10.1128/MCB.00642-08 pmid: 18625724
129 ZhaoX, ChabesA, DomkinV, ThelanderL, RothsteinR (2001). The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J, 20(13): 3544–3553
doi: 10.1093/emboj/20.13.3544 pmid: 11432841
130 ZuckermanJ E, HsuehT, KoyaR C, DavisM E, RibasA (2011). siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol, 131(2): 453–460
doi: 10.1038/jid.2010.310 pmid: 20944646
[1] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed