Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 244-253    https://doi.org/10.1007/s11515-014-1303-5
RESEARCH ARTICLE
Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products
C. SUBATHRA DEVI(),Shantan REDDY,V. MOHANASRINIVASAN
School of Biosciences and Techndogy, VIT University, Vellore-632014, Tamil Nadu, India
 Download: PDF(884 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Leuconostoc spp. (LS1and LI1) isolated from sauerkraut and idli batter was selected for dextran production. To enhance the yield of dextran, effects of various parameters such as sucrose concentration, pH, temperature, incubation and inoculum percentage were analyzed. The optimum sucrose concentration for the Leuconostoc spp. (LS1 and LI1) was found to be 15% and 25% respectively. Isolates produced maximum dextran after 20 h of incubation at 29°C and the optimum pH was found between 8 and 8.5. The inoculum concentration of 7.5% was more favorable for the production of dextran by Leuconostoc spp. (LS1 and LI1). The growth kinetic parameters were studied and compared for the strains LS1 and LI1. Mass production of dextran was carried out using a stirred tank batch reactor. FTIR analysis was done to determine the functional groups of dextran. sephadex is prepared by cross linking dextran using epichlorohydrin and the functional groups are determined by FTIR analysis.

Keywords dextran      Leuconostoc sp.      FTIR      bio-polymer      sephadex      epichlorohydrin     
Corresponding Author(s): C. SUBATHRA DEVI   
Issue Date: 24 June 2014
 Cite this article:   
C. SUBATHRA DEVI,Shantan REDDY,V. MOHANASRINIVASAN. Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products[J]. Front. Biol., 2014, 9(3): 244-253.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1303-5
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/244
Fig.1  Gram staining 100X Magnification
Sr.No.CharacterizationPositive control (Leuconostoc mesenteroides NCIM2947)Isolate from sauerkraut (LS1)Isolate from idli batter (LI1)
1Grams stainingPurple chains of cocciPurple chains of cocciPurple chains of cocci
2Blood agarNon hemolyticNon hemolyticNon hemolytic
3MRS agarGummy coloniesGummy coloniesGummy colonies
4Indole testNegativeNegativeNegative
5MR testNegativeNegativeNegative
6VP testPositivePositivePositive
7Citrate utilization testNegativeNegativeNegative
8Eschulin hydrolysis testPositivePositivePositive
9Catalase testNegativeNegativeNegative
10Sucrose fermentationPositivePositivePositive
11Glucose fermentationPositivePositivePositive
12Lactose fermentationPositivePositivePositive
13Arabinose fermentationPositivePositivePositive
14Maltose fermentationPositivePositivePositive
15Mannitol fermentationNegativeNegativeNegative
Tab.1  Table 1 Morphological and biochemical characterization of Leuconostoc spp.
Fig.2  Pure cultures of Leuconostoc sp.(LS1) and Leuconostoc sp.(LI1)
Fig.3  24 h growth curve study of Leuconostoc mesenteroides NCIM 2947; isolate from sauerkraut (LS1) and isolate from idli batter
MRS BrothLeuconostoc mesenteroides NCIM 2947Isolate from sauerkraut (LS1)Isolate form idli batter (LI1)
Generation time (min)1207090
Growth rate constant (h-1)0.20.30.3
Doubling time (h)53.333.33
Production brothLeuconostoc mesenteroides NCIM 2947Isolate from sauerkraut (LS1)Isolate form idli batter (LI1)
Generation time (min)12070130
Growth rate constant (h-1)0.20.1710.185
Doubling time (h)55.845.416
Tab.2  Growth rate parameters in MRS and production medium
Leuconostoc mesenteroides NCIM 2947Leuconostoc spp. (LS1)from sauerkrautLeuconostoc spp (LI1) form idli batter
Amount of dextran produced (g/100mL)0.1860.2060.282
Tab.3  Dextran production
Fig.4  Optimization of sucrose concentration
Fig.5  Optimization of pH
Fig.6  Optimization of temperature
Fig.7  Optimization of inoculums percentage
Fig.8  Optimization of incubation time
Fig.9  FTIR spectra of dextran produced by Leuconostoc spp. from sauerkraut
Fig.10  FTIR spectra of dextran produced by Leuconostoc spp. from idli batter
Fig.11  FTIR spectra of dextran produced by Leuconostoc mesenteroides NCIM 2947
Fig.12  FTIR spectra of sephadex obtained by cross linking dextran obtained from idli batter
Fig.13  FTIR spectra of sephadex obtained by cross linking dextran obtained from sauerkraut
1 AlsopR M (1983). Industrial Production of Dextrans. Prog Ind Microbiol, 18: 1-42
2 AmanA, SiddiquiN N, ShahA U Q (2011). Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr Polym, 87(1): 910-915
doi: 10.1016/j.carbpol.2011.08.094
3 GünerA, AkmanÖ, RzaevZ M O (2001). Crosslinking of dextran with some selective Cl-, P- and N-containing functional substances in aqueous solutions. React Funct Polym, 47(1): 55-65
doi: 10.1016/S1381-5148(00)00072-9
4 HalaszH, BarathA, HolzapfelW H (1999). The influence of starter culture selection on sauerkraut fermentation. Z Lebensm Unters Forsch, 208(5-6): 434-438
doi: 10.1007/s002170050443
5 HamasakiY, AyakiM, FuchuH, SugiyamaM, MoritaH (2003). Behaviour of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl Environ Microbiol, 69(6): 3668-3671
doi: 10.1128/AEM.69.6.3668-3671.2003
6 HoltJ G (1994). Group 17 Gram-Positive Cocci: Bergey's Manual of Determinative Bacteriology, ed 9th. Baltimore: William & Wilkins: 529-541
7 KaboliH, ReillyP (1980). Immobilization and properties of Leuconostoc mesenteroides dextransucrase. Biotechnol Bioeng, 22(5): 1055-1069
doi: 10.1002/bit.260220513
8 KatinaK, MainaN H, JuvonenR, FlanderL, JohanssonL, VirkkiL, TenkanenM, LaitilaA (2009). In situ production and analysis of Weissella confuse dextran in wheat sourdough. Food Microbiol, 26(7): 734-743
doi: 10.1016/j.fm.2009.07.008
9 KhanF, KhanamA, PariharM S, BilgainyaR, RaiK, KhanF (2010). Dissipative convective structures and nanoparticles encapsulation in Cu/alginate/dextran composite hydrogels and sponges. Carbohydr Polym, 83(2): 586-590
doi: 10.1016/j.carbpol.2010.08.021
10 KimD, DayDF (1994) A New process for the production of clinical dextran by mixed culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides, Enzyme Microbial Technol16: 84\4-848.
11 KimD, RobytJ F, LeeS Y, LeeJ H, KimY M (2003). Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res, 338(11): 183-1189
doi: 10.1016/S0008-6215(03)00148-4
12 LeathersT D, HaymanG T, CoteG L (1995). Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr Microbiol, 31(1): 19-22
doi: 10.1007/BF00294628
13 Martinez-EspindolaJ P, Lopez-ManguiaC A (1985). On the kinetics of dextransucrase and dextran synthesis in batch reactors. Biotechnol Lett, 7(7): 483-486
doi: 10.1007/BF01199863
14 NassabMarzeih Moosavi, GavahianMohsen, YousefiAli R. and AskariHamed (2010) Fermentative production of dextran using food industry wastes. World Acad Sci Eng Technol: 68.
15 SantosM J, TeixeiraJ, RodriguesA (2000). Production of dextransucrase,dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512 (f). Biochem Eng J, 4(3): 177-188
doi: 10.1016/S1369-703X(99)00047-9
16 SarwatF, ShahA U Q, AmanA, AhmedN (2008). Production & Characterization of a Unique Dextran from an Indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci, 4: 379-386
doi: 10.7150/ijbs.4.379
17 Shah AliUL Qader, LubnaIqbal, AfsheenAman, ErumShireen, AbidAzhar (2005). Production of dextran by newly isolated strains of Leuconostoc mesenteroides PCSIR-4 and PCSIR-9. Turk J Biochem, 31(1): 21-26
18 SutherlandI W (1996). Extracellular polysaccharides. Biotechnol, 6(2): 145
[1] Arooj Arshad, Bisma Ashraf, Iftikhar Ali, Nazia Jamil. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment[J]. Front. Biol., 2017, 12(3): 210-218.
[2] Pooja Arora, Sunita Sharma, Sib Krishna Ghoshal, Neeraj Dilbaghi, Ashok Chaudhury. A functional approach toward xerogel immobilization for encapsulation biocompatibility of Rhizobium toward biosensor[J]. Front Biol, 2013, 8(6): 626-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed