Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 410-421    https://doi.org/10.1007/s11515-014-1314-2
RESEARCH ARTICLE
Computational screening of disease associated mutations on NPC1 gene and its structural consequence in Niemann-Pick type-C1
Naresh KANDAKATLA1,*(),Geetha RAMAKRISHNAN1,Rajasekhar CHEKKARA1,Namachivayam BALAKRISHNAN2
1. Department of Chemistry, Sathayabama University, Jeppiaar Nagar, Chennai-600119, India
2. St. Joseph’s College, Bharathidasan University, Tiruchirappalli, 620002, India
 Download: PDF(368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. R1186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (R1186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPC1 gene upon mutation.

Keywords Niemann-Pick disease type C1      SNPs      gene mutation     
Corresponding Author(s): Naresh KANDAKATLA   
Online First Date: 11 August 2014    Issue Date: 11 October 2014
 Cite this article:   
Naresh KANDAKATLA,Geetha RAMAKRISHNAN,Rajasekhar CHEKKARA, et al. Computational screening of disease associated mutations on NPC1 gene and its structural consequence in Niemann-Pick type-C1[J]. Front. Biol., 2014, 9(5): 410-421.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1314-2
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/410
SNP IDMutationSIFTPolyPhen 2.0PANTHER
ToleranceindexPredictionPSICpredictionsubPSECPrediction
rs202140203Y634C0.00Deleterious1.000Damaging-6.31284Deleterious
rs202046984I787V0.71Tolerated0.000Benign-3.66577Deleterious
rs201956601D232G0.46Tolerated0.000BenignNANA
rs201791992V517I0.52Tolerated0.003Benign-3.72368Deleterious
rs201351377N490T0.04Deleterious0.866Damaging-5.18241Deleterious
rs201236716N598S0.16Tolerated0.877Damaging-3.59379Deleterious
rs201226297P471L0.00Deleterious1.000Damaging-8.04132Deleterious
rs201156397A558S0.18Tolerated0.990Damaging-5.01162Deleterious
rs201100763L737V0.01Deleterious0.995Damaging-3.39472Deleterious
rs201021988D182N0.22Tolerated0.000BenignNANA
rs200444084R1186H0.00Deleterious1.000Damaging-4.25642Deleterious
rs200323346V148L0.34Tolerated0.000BenignNANA
rs200291759N70S0.45Tolerated0.001Benign-2.68708Tolerated
rs200264267R1272C0.04Deleterious0.999Damaging-6.61915Deleterious
rs200243024S365L0.06Tolerated0.334Benign-3.67158Deleterious
rs199963560A181T0.07Tolerated0.500DamagingNANA
rs199812609V494M0.11Tolerated0.008Benign-4.24951Deleterious
rs199693280C334S0.36Tolerated0.000Benign-3.37473Deleterious
rs193182840V780M0.01Deleterious0.961Damaging-6.53794Deleterious
rs192963719A183V0.28Tolerated0.000BenignNANA
rs191876836K1010Q0.36Tolerated0.007Benign-3.84354Deleterious
rs191537721D502E1.00Tolerated0.000Benign-3.52121Deleterious
rs190298665F842L0.00Deleterious1.000Damaging-4.95077Deleterious
rs151305963R1274Q0.20Tolerated0.003Benign-4.17639Deleterious
rs150334966S1004L0.23Tolerated0.837Damaging-5.30274Deleterious
rs150154006E301K0.50Tolerated0.109BenignNANA
rs150053420R372Q0.57Tolerated0.001Benign-3.57866Deleterious
rs149074243M156V0.42Tolerated0.019BenignNANA
rs149020783C352F0.46Tolerated0.000Benign-4.21514Deleterious
rs148571882W1122R0.46Tolerated0.013Benign-4.31283Deleterious
rs148237665Y932S0.42Tolerated0.077Benign-3.74345Deleterious
rs148035987R1183H0.00Deleterious0.976Damaging-6.7934Deleterious
rs147615070M156T0.67Tolerated0.014BenignNANA
rs147021046N589S0.28Tolerated0.001Benign-4.34832Deleterious
rs146874573V753M0.07Tolerated0.643Damaging-5.2153Deleterious
rs146666146A1018T0.03Deleterious0.883Damaging-4.6953Deleterious
rs145666943Q60H0.09Tolerated0.656Damaging-4.24272Deleterious
rs145362908V810L0.30Tolerated0.000Benign-3.88266Deleterious
rs145297180R1186C0.00Deleterious1.000Damaging-6.79621Deleterious
rs144725473V1141G0.00Deleterious0.984Damaging-4.77998Deleterious
rs144687654S652R0.00Deleterious0.999Damaging-5.59673Deleterious
rs143908453T759A0.62Tolerated0.340Benign-3.43971Deleterious
rs143797098P424A0.98Tolerated0.014Benign-4.17737Deleterious
rs143205855G149R0.33Tolerated0.248BenignNANA
rs143124972S940L0.01Deleterious0.999Damaging-5.68616Deleterious
rs141892620I450V0.45Tolerated0.007Benign-3.9303Deleterious
rs141440861G1073S0.77Tolerated0.069Benign-2.81269Tolerated
rs141361998V327I0.13Tolerated0.002BenignNANA
rs141243713R161W0.00Deleterious0.982DamagingNANA
rs140952850R116Q0.16Tolerated0.000Benign-3.01094Deleterious
rs140827681F1207L0.47Tolerated0.715Damaging-3.80895Deleterious
rs140786703A659V0.41Tolerated0.033Benign-4.31882Deleterious
rs140527006E1271Q0.24Tolerated0.604Damaging-4.43776Deleterious
rs140211089H1016R0.23Tolerated0.243Benign-2.86351Tolerated
rs140149624S425L0.14Tolerated0.006Benign-3.56317Deleterious
rs139751448R404Q0.00Deleterious1.000Damaging-5.56223Deleterious
rs139612110S1169I0.00Deleterious1.000Damaging-3.97501Deleterious
rs139485263N185D0.17Tolerated0.005BenignNANA
rs139297968A851T0.02Deleterious0.994Damaging-5.57919Deleterious
rs138277307E43K0.93Tolerated0.001Benign-2.86264Tolerated
rs138184115A521S0.52Tolerated0.003Benign-3.62631Deleterious
rs138151007W291C0.17Tolerated0.957DamagingNANA
rs138079168A321V0.29Tolerated0.001BenignNANA
rs120074136C113R0.00Deleterious1.000Damaging-3.53647Deleterious
rs120074135V950M0.28Tolerated0.007Benign-4.28583Deleterious
rs120074134V378A0.09Tolerated0.969Damaging-5.35292Deleterious
rs120074132R958Q0.05Deleterious1.000Damaging-8.09327Deleterious
rs120074131L1213F0Deleterious1.000Damaging-3.49078Deleterious
rs120074130V889M0.12Tolerated0.995Damaging-4.2027Deleterious
rs113371321A1187V0.12Tolerated0.999Damaging-3.41161Deleterious
rs112387560R646H0.28Tolerated0.010Benign-5.13502Deleterious
rs112101747V706A0.03Deleterious0.994Damaging-4.37216Deleterious
rs111256741A183T0.36Tolerated0.000BenignNANA
rs80358259I1061T0Deleterious1.000Damaging-8.53429Deleterious
rs80358258A1054T0.01Deleterious0.875Damaging-5.70035Deleterious
rs80358257P1007A0.01Deleterious0.995Damaging-5.56021Deleterious
rs80358254G992R0.50Tolerated0.789Damaging-3.84824Deleterious
rs80358253Q775P0.00Deleterious1.000Damaging-7.73353Deleterious
rs80358252C177Y0.02Deleterious0.999DamagingNANA
rs80358251P237S0.38Tolerated0.003BenignNANA
rs77815278Y420S0.17Tolerated0.742Damaging-3.46767Deleterious
rs77080672R411Q0.58Tolerated0.000Benign-4.66248Deleterious
rs76615690V624I1.00Tolerated0.005Benign-3.83876Deleterious
rs61731969M1179V0.48Tolerated0.000Benign-4.50621Deleterious
rs61731962P434S0.02Deleterious0.001Benign-4.94008Deleterious
rs55680026N222S0.74Tolerated0.003BenignNANA
rs35248744S1200G0.00Deleterious0.998Damaging-6.50452Deleterious
rs34302553G911S0.66Tolerated0.904Damaging-4.16641Deleterious
rs34226296V1115F0.07Tolerated0.001Benign-4.57463Deleterious
rs34084984N961S0.78Tolerated0.034Benign-3.56842Deleterious
rs28942108R978C0.05Deleterious0.955Damaging-3.84198Deleterious
rs28942107A1035V0.01Deleterious0.996Damaging-5.95932Deleterious
rs28942106Y1088C0.00Deleterious1.000Damaging-7.52745Deleterious
rs28942105N1156S0.00Deleterious1.000Damaging-4.42918Deleterious
rs28942104T1036M0.00Deleterious1.000Damaging-4.29841Deleterious
rs28940897Q928P0.09Tolerated0.082BenignNANA
rs17855819S151G0.12Tolerated0.091BenignNANA
rs13381670T511M0.01Deleterious0.978Damaging-4.23833Deleterious
rs1805084R1266Q0.54Tolerated0.003Benign-3.3839Deleterious
rs1805082I858V0.58Tolerated0.047Benign-3.71112Deleterious
rs1805081H215R0.53Tolerated0.000BenignNANA
rs1788799M642I1.00Tolerated0.000Benign-3.60971Deleterious
rs1140458N931K0.12Tolerated0.034Benign-3.89891Deleterious
Tab.1  Summary of nsSNPs that were analyzed by three computational methods SIFT (Tolerated/Deleterious), PolyPhen 2.0 (Benign/Damaging) and PANTHER (Tolerated/Deleterious).
SNP IDsAmino acid changePHDsnp resultsPmutMUTPred
ScorePredictiong scoreP scoreMolecular variationPrediction reliability
rs202140203Y634CDisease0.6874Pathological0.9100.1836Gain of catalytic residueLow confidence
rs201351377N490TDisease0.2170Neutral0.6690.132Gain of helixLow confidence
rs201226297P471LDisease0.2581Neutral0.5720.062Gain of helixLow confidence
rs201100763L737VNeutral0.2533Neutral0.4640.2612Loss of stabilityLow confidence
rs200444084R1186HDisease0.5891Pathological0.9000.0647Loss of MoRF bindingLow confidence
rs200264267R1272CDisease0.7847Pathological0.4480.0125Gain of sheetLow confidence
rs193182840V780MNeutral0.2847Neutral0.7060.3997Loss of catalytic residueLow confidence
rs190298665F842LDisease0.3521Neutral0.7450.1532Loss of stabilityLow confidence
rs148035987R1183HDisease0.5679Pathological0.4430.0269Loss of MoRF bindingLow confidence
rs146666146A1018TDisease0.6817Pathological0.7770.0737Gain of phosphorylationLow confidence
rs145297180R1186CDisease0.6215Pathological0.8040.0127Loss of disorderActionable hypothesis
rs144725473V1141GDisease0.8750Pathological0.6640.0428Loss of stabilityActionable hyphothesis
rs144687654S652RDisease0.8608Pathological0.8880.0516Gain of MoRF bindingLow confidence
rs143124972S940LDisease0.7018Pathological0.8740.0284Gain of catalytic residueActionable hypothesis
rs139751448R404QDisease0.4922Neutral0.9690.0457Loss of sheetActionable hypothesis
rs139612110S1169IDisease0.7754Pathological0.7870.0827Gain of sheetLow confidence
rs139297968A851TNeutral0.5439Pathological0.6610.079Loss of helixLow confidence
rs120074136C113RNeutral0.7311Pathological0.9740.0396Gain of disorderActionable hypothesis
rs120074132R958QDisease0.8995Pathological0.8150.0281Loss of catalytic residueConfident hypothesis
rs120074131L1213FDisease0.9486Pathological0.9680.0777Loss of ubiquitinationLow confidence
rs112101747V706ANeutral0.2515Neutral0.6430.0375Gain of catalytic residueActionable hypothesis
rs80358259I1061TDisease0.7847Pathological0.9506e-04Gain of disorderVery Confident hypothesis
rs80358258A1054TDisease0.6808Pathological0.8630.141Loss of ubiquitinationLow confidence
rs80358257P1007ADisease0.3212Neutral0.9070.0151Loss of stabilityActionable hypothesis
rs80358253Q775PDisease0.7092Pathological0.8980.1853Gain of catalytic residueLow confidence
rs35248744S1200GNeutral0.6112Pathological0.6710.0144Loss of glycosylationActionable hypothesis
rs28942108R978CNeutral0.8950Pathological0.8500.0374Loss of loopActionable hypothesis
rs28942107A1035VDisease0.4889Neutral0.8730.039Gain of sheetActionable hypothesis
rs28942106Y1088CDisease0.8843Pathological0.8970.0558Loss of helixLow confidence
rs28942105N1156SDisease0.4500Neutral0.9360.2294Gain of helixLow confidence
rs28942104T1036MDisease0.6654Pathological0.8420.0986Loss of loopLow confidence
Tab.2  The disease-associated SNPs are predicted from PHDSnp server results, pathogenecity index obtained from Pmut server and g score, P score, molecular variations and prediction reliability calculated from MutPred server. Here the most deleterious nsSNPs are displayed in bold.
Protein typeTotal ASA Value (?2)Free folding energy (Kcal/mol)RMSD (?2)No. of hydrogen bonds
NPC19809.7–204.520221
NPCR1186C19879.1–184.290.077218
NPCS940L19813.4–184.570.082217
NPCR958Q19805.7–182.550.076218
NPCI1061T19973.8–181.330.088215
Tab.3  List of ASA value, Free Folding energy, RMSD and No. of Hydrogen bonds in native and mutant NPC1 proteins
Fig.1  (A)–(D) Superimposition of native and mutant (R1186C, S940L, R958Q and I1061T) modeled structures of NPC1.
Fig.2  Normal mode analysis of c-alpha carbon atom of native and mutant NPC1. (A) Native, (B) R1186C, (C) S940L, (D) R958Q, (E) I1061T.
1 Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S, Sunyaev S R (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248 pmid: 20354512
2 Amberger J, Bocchini C A, Scott A F, Hamosh A (2009). McKusick's online Mendelian inheritance in man (OMIM?). Nucleic Acids Res, 37(Database issue suppl 1): D793–D796
https://doi.org/10.1093/nar/gkn665 pmid: 18842627
3 Balu K, Purohit R (2013). Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513(1): 184–195
https://doi.org/10.1016/j.gene.2012.09.128 pmid: 23085273
4 Balu K, Rajendran V, Sethumadhavan R, PurohitR (2013). Investigation of binding phenomenon of NSP3 and p130Cas mutants and their effect on cell signalling. Cell Biochem Biophys, 67(2): 623–633
https://doi.org/10.1007/s12013-013-9551-6 pmid: 23494262
5 Bauer P, Knoblich R, Bauer C, Finckh U, Hufen A, Kropp J, Braun S, Kustermann-Kuhn B, Schmidt D, Harzer K, Rolfs A (2002). NPC1: Complete genomic sequence, mutation analysis, and characterization of haplotypes. Hum Mutat, 19(1): 30–38
https://doi.org/10.1002/humu.10016 pmid: 11754101
6 Beltroy E P, Richardson J A, Horton J D, Turley S D, Dietschy J M (2005). Cholesterol accumulation and liver cell death in mice with Niemann-Pick type C disease. Hepatology, 42(4): 886–893
https://doi.org/10.1002/hep.20868 pmid: 16175610
7 Capriotti E, Calabrese R, Casadio R (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22): 2729–2734
https://doi.org/10.1093/bioinformatics/btl423 pmid: 16895930
8 Carstea E D, Morris J A, Coleman K G, Loftus S K, Zhang D, Cummings C, Gu J, Rosenfeld M A, Pavan W J, Krizman D B, Nagle J, Polymeropoulos M H, Sturley S L, Ioannou Y A, Higgins M E, Comly M, Cooney A, Brown A, Kaneski C R, Blanchette-Mackie E J, Dwyer N K, Neufeld E B, Chang T Y, Liscum L, Strauss J F 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill R R, van Diggelen O P, Elleder M, Patterson M C, Brady R O, Vanier M T, Pentchev P G, Tagle D A (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science, 277(5323): 228–231
https://doi.org/10.1126/science.277.5323.228 pmid: 9211849
9 Carvalho M A, Marsillac S M, Karchin R, Manoukian S, Grist S, Swaby R F, Urmenyi T P, Rondinelli E, Silva R, Gayol L, Baumbach L, Sutphen R, Pickard-Brzosowicz J L, Nathanson K L, Sali A, Goldgar D, Couch F J, Radice P, Monteiro A N A (2007). Determination of cancer risk associated with germ line BRCA1 missense variants by functional analysis. Cancer Res, 67(4): 1494–1501
https://doi.org/10.1158/0008-5472.CAN-06-3297 pmid: 17308087
10 Carvalho M, Pino M A, Karchin R, Beddor J, Godinho-Netto M, Mesquita R D, Rodarte R S, Vaz D C, Monteiro V A, Manoukian S, Colombo M, Ripamonti C B, Graeme SuthersR R, Borg A, Radice P, Grist S A, Monteiro A N A, Billack B (2009). Analysis of a set of missense, frameshift, and in-frame deletion variants of BRCA1. Mutat Res, 660(1): 1–11
11 Chasman D, Adams R M (2001). Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol, 307(2): 683–706
https://doi.org/10.1006/jmbi.2001.4510 pmid: 11254390
12 Fernandez-Valero E M, Ballart A, Iturriaga C, Lluch M, Macias J, Vanier M T, Pineda M, Coll M J (2005). Identification of 25 new mutations in 40 unrelated Spanish Niemann-Pick type C patients: genotype-phenotype correlations. Clin Genet, 68(3): 245–254
https://doi.org/10.1111/j.1399-0004.2005.00490.x pmid: 16098014
13 Ferrer-Costa C, Gelpí J L, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005). PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics, 21(14): 3176–3178
https://doi.org/10.1093/bioinformatics/bti486 pmid: 15879453
14 Garver W S, Francis G A, Jelinek D, Shepherd G, Flynn J, Castro G, Walsh Vockley C, Coppock D L, Pettit K M, Heidenreich R A, Meaney F J (2007). The National Niemann-Pick C1 disease database: report of clinical features and health problems. Am J Med Genet A, 143A(11): 1204–1211
https://doi.org/10.1002/ajmg.a.31735 pmid: 17497724
15 Garver W S, Heidenreich R A (2002). The Niemann-Pick C proteins and trafficking of cholesterol through the late endosomal/lysosomal system. Curr Mol Med, 2(5): 485–505
https://doi.org/10.2174/1566524023362375 pmid: 12125814
16 Garver W S, Jelinek D, Meaney F J, Flynn J, Pettit K M, Shepherd G, Heidenreich R A, Vockley C M W, Castro G, Francis G A (2010). The National Niemann-Pick Type C1 Disease Database: correlation of lipid profiles, mutations, and biochemical phenotypes. J Lipid Res, 51(2): 406–415
https://doi.org/10.1194/jlr.P000331 pmid: 19744920
17 Goldgar D E, Easton D F, Deffenbaugh A M, Monteiro A N, Tavtigian S V, Couch F J, the Breast Cancer Information Core (BIC) Steering Committee (2004). Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet, 75(4): 535–544
https://doi.org/10.1086/424388 pmid: 15290653
18 Goldstein J L, Brown M S (1992). Lipoprotein receptors and the control of plasma LDL cholesterol levels. Eur Heart J, 13(Suppl B): 34–36
https://doi.org/10.1093/eurheartj/13.suppl_B.34 pmid: 1644100
19 Greer W L, Dobson M J, Girouard G S, Byers D M, Riddell D C, Neumann P E (1999). Mutations in NPC1 highlight a conserved NPC1-specific cysteine-rich domain, Am J Hum Genet, 65(5): 1252–1260
20 Harpaz Y, Gerstein M, Chothia C (1994). Volume changes on protein folding. Structure, 2(7): 641–649
https://doi.org/10.1016/S0969-2126(00)00065-4 pmid: 7922041
21 Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput, 4(3): 435–447
https://doi.org/10.1021/ct700301q
22 Hollup S M, Salensminde G, Reuter N (2005). WEBnm@: a web application for normal mode analyses of proteins. BMC Bioinformatics, 6(1): 52
https://doi.org/10.1186/1471-2105-6-52 pmid: 15762993
23 Ioannou Y A (2000). The structure and function of the Niemann-Pick C1 protein. Mol Genet Metab, 71(1-2): 175–181
https://doi.org/10.1006/mgme.2000.3061 pmid: 11001808
24 Kamaraj B, Purohit R (2014). Computational screening of disease-associated mutations in OCA2 gene. Cell Biochem Biophys, 68(1): 97–109
https://doi.org/10.1007/s12013-013-9697-2 pmid: 23824587
25 Kamaraj B, Purohit R (2013). In silico screening and molecular dynamics simulation of disease-associated nssnp in tyrp1 gene and its structural consequences in OCA3. BioMed Res Int, 2013: Article ID 697051
https://doi.org/10.1155/2013/697051.
26 Kaplan W, Littlejohn T G (2001). Swiss-PDB viewer (deep view). Brief Bioinform, 2(2): 195–197
https://doi.org/10.1093/bib/2.2.195 pmid: 11465736
27 Karchin R (2009). Next generation tools for the annotation of human SNPs. Brief Bioinform, 10(1): 35–52
https://doi.org/10.1093/bib/bbn047 pmid: 19181721
28 Kobayashi T, Beuchat M H, Lindsay M, Frias S, Palmiter R D, Sakuraba H, Parton R G, Gruenberg J (1999). Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol, 1(2): 113–118
https://doi.org/10.1038/15666 pmid: 10559883
29 Kumar A, Purohit R (2012a). Computational centrosomics: an approach to understand the dynamic behaviour of centrosome. Gene, 511(1): 125–126
https://doi.org/10.1016/j.gene.2012.09.040 pmid: 23000070
30 Kumar A, Purohit R (2012c). Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene, 503(1): 75–82
https://doi.org/10.1016/j.gene.2012.04.032 pmid: 22555018
31 Kumar A, Purohit R (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One, 8(5): e64364
https://doi.org/10.1371/journal.pone.0064364 pmid: 23741320
32 Kumar A, Purohit R (2014). Use of Long Term Molecular Dynamics Simulation in Predicting Cancer Associated SNPs. PLoS Comput Biol, 10(4): e1003318
https://doi.org/10.1371/journal.pcbi.1003318 pmid: 24722014
33 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013). Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One, 8(10): e77453
https://doi.org/10.1371/journal.pone.0077453 pmid: 24146998
34 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013a). Computational investigation of cancer-associated molecular mechanism in Aurora A (S155R) mutation. Cell Biochem Biophys, 66(3): 787–796
https://doi.org/10.1007/s12013-013-9524-9 pmid: 23412841
35 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013b). Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochem Biophys, 67(3): 837–851
https://doi.org/10.1007/s12013-013-9572-1 pmid: 23564489
36 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2014). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. J Biomol Struct Dyn, 32(3): 394–405
https://doi.org/10.1080/07391102.2013.770373 pmid: 23527964
37 Kumar A, Rajendran V, Sethumadhavan R, Shukla P, Tiwari S, Purohit R (2014). Computational SNP analysis: current approaches and future prospects. Cell Biochem Biophys, 68(2): 233–239
https://doi.org/10.1007/s12013-013-9705-6 pmid: 23852834
38 Kumar P, Henikoff S, Ng P C (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 4(7): 1073–1081
https://doi.org/10.1038/nprot.2009.86 pmid: 19561590
39 Kumar A, Purohit R (2012b). Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat Res, 738–739: 28–37
40 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2012). In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio, 2: 285–293
41 Laskowski R A, Rullmannn J A, MacArthur M W, Kaptein R, Thornton J M (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 8(4): 477–486
https://doi.org/10.1007/BF00228148 pmid: 9008363
42 Li B, Krishnan V G, Mort M E, Xin F, Kamati K K, Cooper D N, Mooney S D, Radivojac P (2009). Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics, 25(21): 2744–2750
https://doi.org/10.1093/bioinformatics/btp528 pmid: 19734154
43 Liscum L (2000). Niemann-Pick type C mutations cause lipid traffic jam. Traffic, 1(3): 218–225
https://doi.org/10.1034/j.1600-0854.2000.010304.x pmid: 11208105
44 Millat G, Ba?lo N, Molinero S, Rodriguez C, Chikh K, Vanier M T (2005). Niemann-Pick C disease: use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab, 86(1-2): 220–232
https://doi.org/10.1016/j.ymgme.2005.07.007 pmid: 16126423
45 Millat G, Mar?ais C, Rafi M A, Yamamoto T, Morris J A, Pentchev P G, Ohno K, Wenger D A, Vanier M T (1999). Niemann-Pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Hum Genet, 65(5): 1321–1329
https://doi.org/10.1086/302626 pmid: 10521297
46 Millat G, Mar?ais C, Tomasetto C, Chikh K, Fensom A H, Harzer K, Wenger D A, Ohno K, Vanier M T (2001). Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet, 68(6): 1373–1385
https://doi.org/10.1086/320606 pmid: 11333381
47 Mooney S (2005). Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform, 6(1): 44–56
https://doi.org/10.1093/bib/6.1.44 pmid: 15826356
48 Morris J A, Zhang D, Coleman K G, Nagle J, Pentchev P G, Carstea E D (1999). The genomic organization and polymorphism analysis of the human Niemann-Pick C1 gene. Biochem Biophys Res Commun, 261(2): 493–498
https://doi.org/10.1006/bbrc.1999.1070 pmid: 10425213
49 Ng P C, Henikoff S (2006). Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet, 7(1): 61–80
https://doi.org/10.1146/annurev.genom.7.080505.115630 pmid: 16824020
50 Pipalia N H, Huang A, Ralph H, Rujoi M, Maxfield F R (2006). Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells. J Lipid Res, 47(2): 284–301
https://doi.org/10.1194/jlr.M500388-JLR200 pmid: 16288097
51 Puri V, Watanabe R, Dominguez M, Sun X, Wheatley C L, Marks D L, Pagano R E (1999). Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol, 1(6): 386–388
https://doi.org/10.1038/14084 pmid: 10559968
52 Purohit R (2014). Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. J Biomol Struct Dyn, 32(7): 1033–1046
https://doi.org/10.1080/07391102.2013.803264 pmid: 23782055
53 Purohit R, Rajendran V, Sethumadhavan R (2011a). Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn, 29(1): 137–152
https://doi.org/10.1080/07391102.2011.10507379 pmid: 21696230
54 Purohit R, Rajendran V, Sethumadhavan R (2011b). Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: an in silico analysis. J Mol Model, 17(4): 869–877
https://doi.org/10.1007/s00894-010-0785-6 pmid: 20593210
55 Purohit R, Sethumadhavan R (2009). Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci, 1(4): 320–328
https://doi.org/10.1007/s12539-009-0043-8 pmid: 20640812
56 Rajendran V, Purohit R, Sethumadhavan R (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43(2): 603–615
https://doi.org/10.1007/s00726-011-1108-7 pmid: 21989830
57 Rajendran V, Sethumadhavan R (2014). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn, 32(2): 209–221
58 Ribeiro I, Marc?o A, Amaral O, Sá Miranda M C, Vanier M T, Millat G (2001). Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet, 109(1): 24–32
https://doi.org/10.1007/s004390100531 pmid: 11479732
59 Runz H, Dolle D, Schlitter A M, Zschocke J (2008). NPC-db, a Niemann-Pick type C disease gene variation database. Hum Mutat, 29(3): 345–350
https://doi.org/10.1002/humu.20636 pmid: 18081003
60 Scott C, Ioannou Y A(2004). The NPC1 protein: structure implies function. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol L, 1685(1): 8–13
61 Sherry S T, Ward M H, Kholodov M, Baker J, Phan L, Smigielski E M, Sirotkin K (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1): 308–311
https://doi.org/10.1093/nar/29.1.308 pmid: 11125122
62 Steward R E, MacArthur M W, Laskowski R A, Thornton J M (2003). Molecular basis of inherited diseases: a structural perspective. Trends Genet, 19(9): 505–513
https://doi.org/10.1016/S0168-9525(03)00195-1 pmid: 12957544
63 Sun X, Marks D L, Park W D, Wheatley C L, Puri V, O’Brien J F, Kraft D L, Lundquist P A, Patterson M C, Pagano R E, Snow K (2001). Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am J Hum Genet, 68(6): 1361–1372
https://doi.org/10.1086/320599 pmid: 11349231
64 Sun X, Marks D L, Park W D, Wheatley C L, Puri V, O’Brien J F, Kraft D L, Lundquist P A, Patterson M C, Pagano R E, Snow K (2001). Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am J Hum Genet, 68(6): 1361–1372
https://doi.org/10.1086/320599 pmid: 11349231
65 Sunyaev S, Ramensky V, Bork P (2000). Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet, 16(5): 198–200
https://doi.org/10.1016/S0168-9525(00)01988-0 pmid: 10782110
66 Tamura H, Takahashi T, Ban N, Torisu H, Ninomiya H, Takada G, Inagaki N (2006). Niemann-Pick type C disease: novel NPC1 mutations and characterization of the concomitant acid sphingomyelinase deficiency. Mol Genet Metab, 87(2): 113–121
https://doi.org/10.1016/j.ymgme.2005.07.025 pmid: 16143556
67 Tarugi P, Ballarini G, Bembi B, Battisti C, Palmeri S, Panzani F, Di Leo E, Martini C, Federico A, Calandra S (2002). Niemann-Pick type C disease: mutations of NPC1 gene and evidence of abnormal expression of some mutant alleles in fibroblasts. J Lipid Res, 43(11): 1908–1919
https://doi.org/10.1194/jlr.M200203-JLR200 pmid: 12401890
68 Thomas P D, Campbell M J, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003). PANTHER: a library of protein families and subfamilies indexed by function. Genome Res, 13(9): 2129–2141
https://doi.org/10.1101/gr.772403 pmid: 12952881
69 Vanier M T, Suzuki K (1998). Recent advances in elucidating Niemann-Pick C disease. Brain Pathol, 8(1): 163–174
https://doi.org/10.1111/j.1750-3639.1998.tb00143.x pmid: 9458174
70 Wiederstein M, Sippl M J (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 35(Web Server issue suppl 2): W407-10
https://doi.org/10.1093/nar/gkm290 pmid: 17517781
71 Willard L, Ranjan A, Zhang H, Monzavi H, Boyko R F, Sykes B D, Wishart D S (2003). VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res, 31(13): 3316–3319
https://doi.org/10.1093/nar/gkg565 pmid: 12824316
72 Xiong H, Higaki K, Wei C J, Bao X H, Zhang Y H, Fu N, Qin J, Adachi K, Kumura Y, Ninomiya H, Nanba E, Wu X R (2012). Genotype/phenotype of 6 Chinese cases with Niemann-Pick disease type C. Gene, 498(2): 332–335
https://doi.org/10.1016/j.gene.2012.01.026 pmid: 22326530
73 Yamamoto T, Ninomiya H, Matsumoto M, Ohta Y, Nanba E, Tsutsumi Y, Yamakawa K, Millat G, Vanieer M, Pentchev P G, Ohno K (2000). Genotype-phenotype relationship of Niemann-Pick disease type C: a possible correlation between clinical onset and levels of NPC1 protein in isolated skin fibroblasts. J Med Genet, 37(9): 707–712
74 Zhang Y (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1): 40
https://doi.org/10.1186/1471-2105-9-40 pmid: 18215316
[1] C. GEORGE PRIYA DOSS,B. RAJITH,R. MAGESH,A. ASHISH KUMAR. Influence of the SNPs on the structural stability of CBS protein: Insight from molecular dynamics simulations[J]. Front. Biol., 2014, 9(6): 504-518.
[2] Juan WANG, Wenqin SONG. Analysis of genotype polymorphism of tumor-related genes harbored in chromosome arm 1p and 8p in hepatocellular carcinoma patients by cSNP chip[J]. Front Biol Chin, 2009, 4(1): 82-88.
[3] GUO Yibin, DU Chuanshu, WANG Jingjing. Detection of a new mutation (T1140C) in a patient with Hunter syndrome from Guangdong, China[J]. Front. Biol., 2007, 2(4): 383-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed