Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (4) : 287-290    https://doi.org/10.1007/s11515-014-1317-z
RESEARCH ARTICLE
Current trends of antibiotic resistance in clinical isolates of Staphylococcus aureus
Kapil Dev SHARMA1,2, Rajendra Prasad SAINI1, Loganathan KARTHIK2()
1. Dhanwantri Hospital and Research Centre, Jaipur, Rajasthan, India
2. Department of Biosciences, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan – 333 001, India
 Download: PDF(128 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Staphyloccus aureus (S. aureus) is a well known human pathogen known to causes a verity of infections in humans. In recent years S. aureus is reported to show drug resistant toward commonly known drugs. Therefore, this study was designed to study the pattern of antibiotic resistance in 50 clinical isolates of S. aureus isolated at Dhanwantri Hospital and Research Centre, Jaipur, Rajasthan, India. S. aureus cultures were isolated from different clinical samples, pus, throat swabs and urine on Blood agar and MacConkey agar and Chrom agar plats and characterized by an array of microscopic and biochemical tests. Antibiotic sensitivity test was performed by standard disc diffusion method (Kirby bayer's method) on Muller Hinton agar plates. During this study, among 50  S. aureus isolates 48 (96%) were found to be resistance toward Aztreonam and Doxicycline followed by Ciprofloxacin (n = 45, 90%), Cefpodoxime and Ceftazidime (n = 44, 88%), Cefuroxime (n = 40, 80%), Pipracillin+ Tazobactum (n = 38, 76%), Cefoparazone (n = 36, 72%), Amoxicillin+ Clavulanic acid and Ceftriaxone (n = 33, 66%), Levofloxacin (n = 32, 64%), Moxifloxacin (n = 31, 62%), Ofloaxacin (n = 25, 50%), Cloxacillin (n = 22, 44%), Azithromycin (n = 21, 42%), Clindamycin (n = 19, 38%), Meropenem (n = 18, 36%), Clarithromycin (n = 16, 32%), Ampicillin+ sulbactam (n = 13, 26%), Amikacin (n = 12, 24%), Impipenem (n = 8, 16%), Linezolid and Methicillin (n = 7, 14%) and Teicoplanin (n = 3, 6%). In conclusion, the isolated S. aureus found to be resistant toward common antibiotics, however all isolates were found to be susceptible to Vancomycin.

Keywords Staphyloccus aureus      infections      antibiotic resistance     
Corresponding Author(s): Loganathan KARTHIK   
Issue Date: 11 August 2014
 Cite this article:   
Kapil Dev SHARMA,Rajendra Prasad SAINI,Loganathan KARTHIK. Current trends of antibiotic resistance in clinical isolates of Staphylococcus aureus[J]. Front. Biol., 2014, 9(4): 287-290.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1317-z
https://academic.hep.com.cn/fib/EN/Y2014/V9/I4/287
Fig.1  Antimicrobial resistance in S. aureus. Here, Total number of samples used in study was 50; Amikacin (AK), Amoxicillin+ clavulanic acid (AMC), Ampicillin+ sulbactam (A/S), Azithromycin (AZM), Aztreonam (AT), Cefoparazone (CPZ), Cefpodoxime (CPD), Ceftazidime (CAZ), Ceftriaxone (CTR), Cefuroxime (CXM), Ciprofloxacin (CIP), Clarithromycin (CLR), Clindamycin (CD), Cloxacillin (COX), Doxycycline (DO), Impipenem (IPM), Levofloxacin (LE), Linezolid (LZ), Meropenem (MRP), Methicillin (MC), Moxifloxacin (MO), Ofloaxacin (OF), Pipracillin+ Tazobactum, (PIT), Teicoplanin (TEI), Vancomycin (VA)
Antibiotics Levels Dose (mcg/disc) Sensitive Resistance Total
N % N %
Amikacin AK 30 38 72 12 24 50
Amoxicillin+ clavulanic acid AMC 10 17 34 33 66 50
Ampicillin+ sulbactam A/S 10 37 74 13 26 50
Azithromycin AZM 15 29 58 21 42 50
Aztreonam AT 30 2 4 48 96 50
Cefoparazone CPZ 75 14 28 36 72 50
Cefpodoxime CPD 10 6 12 44 88 50
Ceftazidime CAZ 30 6 12 44 88 50
Ceftriaxone CTR 30 17 34 33 66 50
Cefuroxime CXM 30 10 20 40 80 50
Ciprofloxacin CIP 05 5 10 45 90 50
Clarithromycin CLR 15 34 68 16 32 50
Clindamycin CD 02 31 62 19 38 50
Cloxacillin Cox 30 28 56 22 44 50
Doxycycline DO 30 2 4 48 96 50
Impipenem IPM 10 42 84 8 16 50
Levofloxacin LE 05 18 36 32 64 50
Linezolid LZ 30 43 86 7 14 50
Meropenem MRP 10 32 64 18 36 50
Methecillin MC 05 43 86 7 14 50
Moxifloxacin MO 30 19 38 31 62 50
Ofloaxacin OF 05 25 50 25 50 50
Pipracillin+ Tazobactum PIT 10 12 24 38 76 50
Teicoplanin TEI 30 47 94 3 6 50
Vancomycin VA 30 50 100 0 0 50
Tab.1  Antimicrobial resistance in S. aureus
1 P C Appelbaum (2006). MRSA—the tip of the iceberg. Clin Microbiol Infect, 12(s2 Suppl 2): 3−10
https://doi.org/10.1111/j.1469-0691.2006.01402.x pmid: 16524422
2 A M Bal, I M Gould (2005). Antibiotic resistance in Staphylococcus aureus and its relevance in therapy. Expert Opin Pharmacother, 6(13): 2257−2269
https://doi.org/10.1517/14656566.6.13.2257 pmid: 16218886
3 D M Bamberger, S E Boyd (2005). Management of Staphylococcus aureus infections. Am Fam Physician, 72(12): 2474−2481
pmid: 16370403
4 H F Chambers (2001). The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis, 7(2): 178−182
https://doi.org/10.3201/eid0702.010204 pmid: 11294701
5 M Iqbal, K M Ali, B Daraz, U Siddique (2004). Bacteriology of mastitic milk and in vitro antibiogram of the isolates. Pakistan Vet. J, 24: 161−164
6 D M Livermore (2000). Antibiotic resistance in staphylococci. Int J Antimicrob Agents, 16(Suppl 1): S3−S10
https://doi.org/10.1016/S0924-8579(00)00299-5 pmid: 11137402
7 F D Lowy (2003). Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest, 111(9): 1265−1273
https://doi.org/10.1172/JCI200318535 pmid: 12727914
8 A Pantosti, A Sanchini, M Monaco (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol, 2(3): 323−334
https://doi.org/10.2217/17460913.2.3.323 pmid: 17661706
9 C Rayner, W J Munckhof (2005). Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Intern Med J, 35(s2 Suppl 2): S3−S16
https://doi.org/10.1111/j.1444-0903.2005.00976.x pmid: 16271060
10 WHO (1999). Leading cause of death.
[1] Jeremy GROSS, Ian J. PASSMORE, Jade C. S. CHUNG, Olena RZHEPISHEVSKA, Madeleine RAMSTEDT, Martin WELCH. Universal soldier: Pseudomonas aeruginosa – an opportunistic generalist[J]. Front Biol, 2013, 8(4): 387-394.
[2] Maria L. G. Quiloan, John Vu, John Carvalho. Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar[J]. Front Biol, 2012, 7(2): 167-177.
[3] John VU, John CARVALHO. Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology[J]. Front Biol, 2011, 6(5): 357-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed