-A modern computational approach" /> -A modern computational approach" /> -A modern computational approach" />
Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (6) : 508-519    https://doi.org/10.1007/s11515-015-1379-6
RESEARCH ARTICLE
Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach
B. Senthilkumar, D. Meshachpaul, Rao Sethumadhavan, R. Rajasekaran()
School of Biosciences and Technology, Bioinformatics Division, VIT University, Vellore 632014, Tamil Nadu, India
 Download: PDF(1581 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biocatalysts are intrinsically reactive and hence their operational stability is of vital significance for any bioprocess. The setback in biocatalyst stability has been tackled from diverse prospects. Inherently, stable biocatalysts are markedly realized and a regular attempt is being made to seek out new organisms that harbor them. Here, we analyzed the industrial biocatalyst lipase A (Native) of Bacillus subtilis and its six thermostable mutants (2M, 3M, 4M, 6M, 9M and 12M) computationally using conformational sampling technique. Consequently, the various structural events deciphering thermostability like root mean square deviation, root mean square fluctuation, radius of gyration and polar surface area showed mutant 12M to be highly stable with statistical validation. Besides, static model analysis involving intra-molecular interactions, secondary structure, solvent accessibility, hydrogen bond pattern, simulated thermal denaturation and desolvation energy also supported 12M comparatively. Of note, the presence of high secondary structural rigidity and hydrogen bonds increased thermostability and functionality of 12M, thus selecting it as a best template for designing thermostable lipases in future. Also, this study has a significant implication toward a better understanding of conformational sampling in enzyme catalysis and enzyme engineering.

Keywords thermophilic      Bacillus subtilis      lipase A      conformational analysis      docking     
Corresponding Author(s): R. Rajasekaran   
Just Accepted Date: 24 November 2015   Online First Date: 25 December 2015    Issue Date: 26 January 2016
 Cite this article:   
B. Senthilkumar,D. Meshachpaul,Rao Sethumadhavan, et al. Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach[J]. Front. Biol., 2015, 10(6): 508-519.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1379-6
https://academic.hep.com.cn/fib/EN/Y2015/V10/I6/508
Fig.1  Flowchart illustration of the methodology and various bioinformatics tools used in this study.
SI No.PDB IDMutant nameNumber of mutationsTotal No. of IMMHydrophobic
(Å)
Hydrophilic
(Å)
11I6WNativeNative1525782.874558.73
21T4M2M21545428.724131.86
31T2N3M31505651.674194.25
43D2A4M41415913.044213.21
53D2B6M61545528.734359.09
63D2C9M91525683.364199.47
73QMM12M121605497.664101.97
Tab.1  Bacillus subtilis LipA structures along with their computed intra-molecular interactions (IMM), hydrophobic and hydrophilic values of SASA
Fig.2  Geometrical observables of native LipA and its mutants (A) Root Mean Square Deviation (RMSD), (B) Root Mean Square Fluctuation (RMSF), (C) Radius of Gyration (Rg) and (D) Polar surface area (PSA)
Fig.3  Two dimensional view of variable relative solvent solubility of native LipA and its mutants.
Fig.4  Scatter plot showing the distribution of secondary structures in the native LipA and its mutants.
Fig.5  Two dimensional representation of secondary structures for native LipA and its mutants.
ParametersRange and type of H-bondingNative2M3M4M6M9M12M
Number of hydrogen bonds
RangeClass I0000000
Class II189188187185186192197
Class III5134452
TypeM – M126119114112114118119
M – S 17131415131621
S – M33333639393534
S – S 18272623242825
Tab.2  Structural distribution of hydrogen bonds in native LipA and its mutants
ParametersRange and type of H-bondingNative2M3M4M6M9M12M
Number of hydrogen bonds
ClassClass I0000000
Class II23201626222330
Class III1000010
TypeM – M 114254510
M – S 1001012
S – M 119914111113
S – S 1756775
Tab.3  Structural distribution of bifurcated hydrogen bonds for native LipA and its mutants
SI No.PDB IDCluster positionsNumber of cluster residuesPercent rigidity (%)
1Native2-9, 28-39, 48-64, 68-86, 93-100, 153-1728442.9
22M4-9, 14-42, 47-103, 123-130, 133-136, 147-17913773
33M5-9, 16-28, 51-66, 71-76, 79-89, 98-102, 124-128, 164-1747234.9
44M4-11, 18-31, 36-41, 50-67, 72-77, 78-90, 98-103, 124-129, 162-1759147.3
56M4-31, 35-41, 51-67, 70-91, 96-102, 106-110, 123-130, 147-17612465.8
69M4-10, 16-41, 50-90, 96-103, 123-131, 134-141, 146-17713170.9
712M4-10, 15-42, 47-51, 51-67, 70-89, 96-103, 124-130, 146-151, 162-17511258.7
Tab.4  Percent rigidity and cluster residues that constitute Bacillus subtilis Lip A native and its mutants
Fig.6  A comparative graphical representation of hydrogen bond dilution, showing the number of hydrogen bonds broken and the number of hydrogen bonds remained to be broken, at different energy levels (A-H).
Fig.7  Diagramatic view of the docked native LipA and its mutants with triglyceride (A) mean ACE (B) superimposed structure of the docked Lip A native and mutants and (C) the orientation of triglyceride at the active site.
1 P Acharya, E Rajakumara, R Sankaranarayanan, N M Rao (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol, 341(5): 1271–1281
https://doi.org/10.1016/j.jmb.2004.06.059 pmid: 15321721
2 S Ahmad, M Z Kamal, R Sankaranarayanan, N M Rao (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol, 381(2): 324–340
https://doi.org/10.1016/j.jmb.2008.05.063 pmid: 18599073
3 A Ahmed, F Rippmann, G Barnickel, H Gohlke (2011). A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. J Chem Inf Model, 51(7): 1604–1622
https://doi.org/10.1021/ci100461k pmid: 21639141
4 G A Annenkov, N N Klepikov, L P Martynova, V A Puzanov (2004). Wide range of the use of natural lipases and esterases to inhibit Mycobacterium tuberculosis.. Probl Tuberk Bolezn Legk, (6): 52–56 PMID:15315135
5 S Bandyopadhyay, S Chakraborty, B Bagchi (2005). Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J Am Chem Soc, 127(47): 16660–16667
https://doi.org/10.1021/ja054462u pmid: 16305255
6 H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov, P E Bourne (2000). The Protein Data Bank. Nucleic Acids Res, 28(1): 235–242
https://doi.org/10.1093/nar/28.1.235 pmid: 10592235
7 Z Bikadi, L Demko, E Hazai (2007). Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys, 461(2): 225–234
https://doi.org/10.1016/j.abb.2007.02.020 pmid: 17391641
8 M E Bruins, A E Janssen, R M Boom (2001). Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol, 90(2): 155–186
https://doi.org/10.1385/ABAB:90:2:155 pmid: 11297390
9 L Cavallo, J Kleinjung, F Fraternali (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res, 31(13): 3364–3366
https://doi.org/10.1093/nar/gkg601 pmid: 12824328
10 C C Chou, M Rajasekaran, C Chen (2010). An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking. BMC Bioinformatics, 11(1): 334
https://doi.org/10.1186/1471-2105-11-334 pmid: 20565873
11 P Cossio, D Granata, A Laio, F Seno, A Trovato (2012). A simple and efficient statistical potential for scoring ensembles of protein structures. Sci Rep, 2(14)
https://doi.org/doi:10.1038/srep00351
12 D Duhovny, R Nussinov, H J Wolfson (2002). Efficient unbound docking of rigid molecules. In Algorithms in bioinformatics. Springer, pp. 185–200
13 T Eggert, G van Pouderoyen, B W Dijkstra, K E Jaeger (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett, 502(3): 89–92
https://doi.org/10.1016/S0014-5793(01)02665-5 pmid: 11583117
14 E S Feldblum, I T Arkin (2014). Strength of a bifurcated H bond. Proc Natl Acad Sci USA, 111(11): 4085–4090
https://doi.org/10.1073/pnas.1319827111 pmid: 24591597
15 A R Fersht, M Bycroft, A Horovitz, J T Kellis Jr, A Matouschek, L Serrano (1991). Pathway and stability of protein folding. Philos Trans R Soc Lond B Biol Sci, 332(1263): 171–176
https://doi.org/10.1098/rstb.1991.0046 pmid: 1678536
16 P Gaillard, P A Carrupt, B Testa, A Boudon (1994). Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des, 8(2): 83–96
https://doi.org/10.1007/BF00119860 pmid: 7914913
17 J Gasteiger, C Rudolph, J Sadowski (1990). Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methodol., 3(6): 537–547
https://doi.org/10.1016/0898-5529(90)90156-3
18 P W Goodenough, J A Jenkins (1991). Protein engineering to change thermal stability for food enzymes. Biochem Soc Trans, 19(3): 655–662
https://doi.org/10.1042/bst0190655 pmid: 1783192
19 R Gupta, N Gupta, P Rathi (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol, 64(6): 763–781
https://doi.org/10.1007/s00253-004-1568-8 pmid: 14966663
20 F Hasan, A A Shah, A Hameed (2006). Industrial applications of microbial lipases. Enzyme Microb Technol, 39(2): 235–251
https://doi.org/10.1016/j.enzmictec.2005.10.016
21 M Heinig, D Frishman (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res, 32(Web Server issue): W500-2
pmid: 15215436
22 A Houde, A Kademi, D Leblanc (2004). Lipases and their industrial applications: an overview. Appl Biochem Biotechnol, 118(1-3): 155–170
https://doi.org/10.1385/ABAB:118:1-3:155 pmid: 15304746
23 S Ito, T Kobayashi, K Ara, K Ozaki, S Kawai, Y Hatada (1998). Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles, 2(3): 185–190
https://doi.org/10.1007/s007920050059 pmid: 9783164
24 K E Jaeger, M T Reetz (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 16(9): 396–403
https://doi.org/10.1016/S0167-7799(98)01195-0 pmid: 9744114
25 M Jamroz, A Kolinski, S Kmiecik (2013). CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res, 41(Web Server issue): W427-31
pmid: 23658222
26 X L Ji, S Q Liu (2011). Is stoichiometry-driven protein folding getting out of thermodynamic control? J Biomol Struct Dyn, 28(4): 621–623, discussion 669–674
https://doi.org/10.1080/07391102.2011.10508598 pmid: 21142237
27 M Z Kamal, S Ahmad, T R Molugu, A Vijayalakshmi, M V Deshmukh, R Sankaranarayanan, N M Rao (2011). In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation. J Mol Biol, 413(3): 726–741
https://doi.org/10.1016/j.jmb.2011.09.002 pmid: 21925508
28 K S Keating, S C Flores, M B Gerstein, L A Kuhn (2009). StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci, 18(2): 359–371
https://doi.org/10.1002/pro.38 pmid: 19180449
29 A M Klibanov (1990). Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res, 23(4): 114–120
https://doi.org/10.1021/ar00172a004
30 A M Klibanov (1997). Why are enzymes less active in organic solvents than in water? Trends Biotechnol, 15(3): 97–101
https://doi.org/10.1016/S0167-7799(97)01013-5 pmid: 9080715
31 D M Krüger, A Ahmed, H Gohlke (2012). NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res, 40(Web Server issue): W310-6
pmid: 22669906
32 W H Kruskal (1952). A nonparametric test for the several sample problem. Ann Math Stat, 23(4): 525–540
https://doi.org/10.1214/aoms/1177729332
33 E Kynclova, A Hartig, T Schalkhammer (1995). Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. J Mol Recognit, 8(1-2): 139–145
https://doi.org/10.1002/jmr.300080124 pmid: 7598947
34 A Larios, H S García, R M Oliart, G Valerio-Alfaro (2004). Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl Microbiol Biotechnol, 65(4): 373–376
https://doi.org/10.1007/s00253-004-1602-x pmid: 15248036
35 Y Y Linko, M Lämsä, X Wu, E Uosukainen, J Seppälä, P Linko (1998). Biodegradable products by lipase biocatalysis. J Biotechnol, 66(1): 41–50
https://doi.org/10.1016/S0168-1656(98)00155-2 pmid: 9866859
36 M Y Lobanov, N S Bogatyreva, O V Galzitskaya (2008). Radius of gyration as an indicator of protein structure compactness. Mol Biol, 42(4): 623–628
https://doi.org/10.1134/S0026893308040195 pmid: 18856071
37 Y C Lou, I Wang, M Rajasekaran, Y F Kao, M R Ho, S T D Hsu, S H Chou, S H Wu, C Chen (2014). Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res, 42(6): 4080–4093
https://doi.org/10.1093/nar/gkt1345 pmid: 24371275
38 Y C Lou, S Y Wei, M Rajasekaran, C C Chou, H M Hsu, J H Tai, C Chen (2009). NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res, 37(7): 2381–2394
https://doi.org/10.1093/nar/gkp097 pmid: 19246540
39 S C Luo, Y C Lou, M Rajasekaran, Y W Chang, C D Hsiao, C Chen (2013). Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem, 288(35): 25551–25561
https://doi.org/10.1074/jbc.M113.481978 pmid: 23861396
40 J Ma, Z Zhang, B Wang, X Kong, Y Wang, S Cao, Y Feng (2006). Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif, 45(1): 22–29
https://doi.org/10.1016/j.pep.2005.06.004 pmid: 16039141
41 R Mahalingam, H P Peng, A S Yang (2014). Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophys Chem, 192: 10–19
https://doi.org/10.1016/j.bpc.2014.05.002 pmid: 24934883
42 R Mahalingam, H P Peng, A S Yang (2014). Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. J Theor Biol, 343: 154–161
https://doi.org/10.1016/j.jtbi.2013.10.020 pmid: 24211525
43 A Munoz, D A Katerndahl (2000). Diagnosis and management of acute pancreatitis. Am Fam Physician, 62(1): 164–174
pmid: 10905786
44 H Noureddini, X Gao, R S Philkana (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol, 96(7): 769–777
https://doi.org/10.1016/j.biortech.2004.05.029 pmid: 15607189
45 C N Pace, H Fu, K L Fryar, J Landua, S R Trevino, B A Shirley, M M Hendricks, S Iimura, K Gajiwala, J M Scholtz, G R Grimsley (2011). Contribution of hydrophobic interactions to protein stability. J Mol Biol, 408(3): 514–528
https://doi.org/10.1016/j.jmb.2011.02.053 pmid: 21377472
46 C N Pace, H Fu, K Lee Fryar, J Landua, S R Trevino, D Schell, R L Thurlkill, S Imura, J M Scholtz, K Gajiwala, J Sevcik, L Urbanikova, J K Myers, K Takano, E J Hebert, B A Shirley, G R Grimsley (2014). Contribution of hydrogen bonds to protein stability. Protein Sci, 23(5): 652–661
https://doi.org/10.1002/pro.2449 pmid: 24591301
47 C N Pace, B A Shirley, M McNutt, K Gajiwala (1996). Forces contributing to the conformational stability of proteins. FASEB J, 10(1): 75–83
pmid: 8566551
48 A Pedretti, L Villa, G Vistoli (2004). VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des, 18(3): 167–173
https://doi.org/10.1023/B:JCAM.0000035186.90683.f2 pmid: 15368917
49 A Porollo, J Meller (2010). POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res, 38(Web Server issue): W662-6
pmid: 20504857
50 M Rajasekaran, S Abirami, C Chen (2011). Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PLoS ONE, 6(9): e25801
https://doi.org/10.1371/journal.pone.0025801 pmid: 21980537
51 M Rajasekaran, C Chen (2012). Structural effect of the L16Q, K50E, and R53P mutations on homeodomain of pituitary homeobox protein 2. Int J Biol Macromol, 51(3): 305–313
https://doi.org/10.1016/j.ijbiomac.2012.05.008 pmid: 22584078
52 D Schneidman-Duhovny, Y Inbar, R Nussinov, H J Wolfson (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue): W363-7
pmid: 15980490
53 R Sharma, Y Chisti, U C Banerjee (2001). Production, purification, characterization, and applications of lipases. Biotechnol Adv, 19(8): 627–662
https://doi.org/10.1016/S0734-9750(01)00086-6 pmid: 14550014
54 B Singh, G Bulusu, A Mitra (2015). Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. J Phys Chem B, 119(2): 392–409
https://doi.org/10.1021/jp5079554 pmid: 25495458
55 A Srivastava, S Sinha (2014). Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective. PLoS ONE, 9(8): e102856
https://doi.org/10.1371/journal.pone.0102856 pmid: 25122499
56 K Suhre, Y H Sanejouand (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res, 32(Web Server issue): W610-4
pmid: 15215461
57 F Tian, C Yang, C Wang, T Guo, P Zhou (2014). Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model, 20(6): 2257
https://doi.org/10.1007/s00894-014-2257-x pmid: 24827611
58 K G Tina, R Bhadra, N Srinivasan (2007). PIC. Nucleic Acids Res, 35(Web Server issue): W473-6
pmid: 17584791
59 L D Unsworth, J van der Oost, S Koutsopoulos (2007). Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J, 274(16): 4044–4056
https://doi.org/10.1111/j.1742-4658.2007.05954.x pmid: 17683334
60 G van Pouderoyen, T Eggert, K E Jaeger, B W Dijkstra (2001). The crystal structure of Bacillus subtilis lipase: a minimal a/b hydrolase fold enzyme. J Mol Biol, 309(1): 215–226
https://doi.org/10.1006/jmbi.2001.4659 pmid: 11491291
61 G Vogt, P Argos (1997). Protein thermal stability: hydrogen bonds or internal packing? Fold Des, 2(4): S40–S46
https://doi.org/10.1016/S1359-0278(97)00062-X pmid: 9269567
62 J G Zeikus, C Vieille, A Savchenko (1998). Thermozymes: biotechnology and structure-function relationships. Extremophiles, 2(3): 179–183
https://doi.org/10.1007/s007920050058 pmid: 9783163
[1] Ajeet, Arvind Kumar, Arun K. Mishra. Design, molecular docking, synthesis, characterization, biological activity evaluation (against MES model), in-silico biological activity spectrum (PASS analysis), toxicological and predicted oral rat LD50 studies of novel sulphonamide derivatives[J]. Front. Biol., 2018, 13(6): 425-451.
[2] V. Mohanasrinivasan., A. Mohanapriya, Swaroop Potdar, Sourav Chatterji, Srinath Konne, Sweta Kumari, S. Merlyn Keziah., C. Subathra Devi. In vitro and in silico studies on fibrinolytic activity of nattokinase: A clot buster from Bacillus sp.[J]. Front. Biol., 2017, 12(3): 219-225.
[3] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed