Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (3) : 219-225    https://doi.org/10.1007/s11515-017-1453-3
RESEARCH ARTICLE
In vitro and in silico studies on fibrinolytic activity of nattokinase: A clot buster from Bacillus sp.
V. Mohanasrinivasan., A. Mohanapriya, Swaroop Potdar, Sourav Chatterji, Srinath Konne, Sweta Kumari, S. Merlyn Keziah., C. Subathra Devi()
School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
 Download: PDF(1624 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Nattokinase (NK) is a serine protease enzyme of the subtilisin family. It exhibits a strong fibrinolytic activity. The fibrinolytic enzymes from? Bacillus ?sp. have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process including plasmin activation.

METHODS: In the present study, VIT garden soil was collected and subjected to isolation process in order to screen for the NK production. Screening for NK enzyme was performed by radial caseinolytic assay. The production of NK enzyme was done in two different production medium for comparative studies. The NK enzyme was purified by gel permeation chromatography. The activity of the purified NK was checked by clot lysis and casein digestion assay. To investigate the structural basis of NK and fibrinogen interaction and also to identify the best binding mode, molecular dynamics and docking studies were performed.

RESULTS: Based on the morphological and biochemical characterization, the isolate was identified as Bacillus sp. The overall purification fold of NK was about 3 with the specific activity of 664U/mg and 9.9% yield. Homogeneity of the purified enzyme was analyzed and confirmed by the single band obtained in SDS-PAGE. Molecular weight of the purified protease was estimated as 25 kDa. Purified NK enzyme exhibited 97% of effective clot lysis activity. The NK was docked in to the knob region of the fibrinogen at its binding site using Dock server. A total of 26 residues of fibrinogen and 29 residues of NK constitute the interface region. However, 9 residues of fibrinogen (THR238, MET264, LYS266, ARG275, THR277, ALA279, ASN308, MET310, and LYS321) and 8 residues of NK (GLY61, SER63, THR99, PHE189, LEU209, TYR217, ASN218, and MET222) are involved in intact binding.

CONCLUSIONS: A significant amount of NK enzyme was obtained from Bacillus sp. The docking analysis revealed that the NK and fibrinogen adopt an extended binding pattern and interacts with the crucial residues to exhibit their activity.

Keywords nattokinase (NK)      Bacillussp.      clot busters      docking     
Corresponding Author(s): C. Subathra Devi   
Online First Date: 07 June 2017    Issue Date: 19 June 2017
 Cite this article:   
V. Mohanasrinivasan.,A. Mohanapriya,Swaroop Potdar, et al. In vitro and in silico studies on fibrinolytic activity of nattokinase: A clot buster from Bacillus sp.[J]. Front. Biol., 2017, 12(3): 219-225.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1453-3
https://academic.hep.com.cn/fib/EN/Y2017/V12/I3/219
Fig.1  Bacillus sp. (A) Pure culture (B) Microscopy 40×.
Fig.2  (A) Bacillus sp. showing zone of hydrolysis on casein plate. (B) Hydrolysis of casein by Bacillus sp. expressed in mm.
Fig.3  Elution profile of NK enzyme extracted from Bacillus sp.
Fig.4  Clot lysis activity.
Fig.5  SDS-PAGE of NK enzyme.
Fig.6  Structure of NK (4DWW) visualized using Pymol.
Fig.7  Potential energy plot showing energy minimization (using GROMACS).
Fig.8  Molecular dynamics simulation results. (A) RMSD graph – RMSD of structure is within 0.2 nm suggesting the stability of NK structure. Structure reaches stable conformation after 30 ns during simulation. (B) RMSF plot – Most of the residues (other than residues at position 53, 79, 100, 160, 205, 212) have fluctuaion less than 0.2 nm which confirms the stable conformation of the NK structure. (C) Presence of hydrogen bond in each atom of NK is shown in hydrogen bond existence map. Here red and white color represents presence and absence of hydrogen bond respectively. (D) Number of hydrogen bonds within protein structure is shown in the graph. (D) Negligible variation in total energy was observed during the simulation study. Constant energy graph represents the stabilty of the structure.
Fig.9  NK docked to fibrinogen knob at its binding site using Haddock server.
SampleODμ molActivity (μmol /mL)Activity *dilution factorTotal activity(U*mL)Total protein (mg*mL)Specific activity (U/mg)Fold purification% Yield
Crude0.081921282561280063.52021100
Ammonium sulphate precipitate0.1242161323161347.134013
Ultra filtration0.11267178356142413.2108111
Gel permeation0.1331721142312681.966439.9
Tab.1  NK enzyme activity
ParameterValues
HADDOCK score-114.3±4.7
Cluster size117
RMSD from the overall lowest-energy structure0.7±0.5
Van der Waals energy-66.6±4.0
Electrostatic energy-316.7±32.1
Desolvation energy14.8±11.2
Restraints violation energy8.4±11.47
Buried surface area2040.2±58.1
Z-score-1.0
Tab.2  The Haddock score and energy values of NK-fibrinogen complex
MacromoleculeInterface residuesInteracting residues
NKSer53, Glu54, Gln59, Asp60, Ser62, His64, Asp97, Ser98, Gly100, Ser101, Pro129, Asn155, Glu156, Asn181, Gln185, Arg186, Ala187, Ser188, Val203, Ser204, Gln206, Pro210, Gly211, Thr213, Tyr214, Gly215, Ala216, Gly219, Ser221Gly61, Ser63, Thr99, Phe189, Leu209, Tyr217, Asn218, Met222
FibrinogenLys173, His234, Leu235, Gln239, Ser240, Ala241, Pro243, Ala263, Val267, Gly268, Pro269, Ala271, Asp272, Tyr278, Tyr280, Asp291, Phe303, Phe304, Ser306, Gly309, Gln311, Asn319, Asp320, Asn337, Lys338, Phe389Thr238, Met264, Lys266, Arg275, Thr277, Ala279, Asn308, Met310, Lys321
Tab.3  Interaction analysis of NK-fibrinogen complex representing the interface and interacting residues
1 Bryan P N (2000). Protein engineering of subtilisin. Biochim Biophys Acta, 1543(2): 203–222
https://doi.org/10.1016/S0167-4838(00)00235-1 pmid: 11150607
2 Chang C T, Fan M H, Kuo F C, Sung H Y (2000). Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem, 48(8): 3210–3216
https://doi.org/10.1021/jf000020k pmid: 10956093
3 Chen P T, Chiang C J, Chao Y P (2007). Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnol Prog, 23(4): 808–813
https://doi.org/10.1021/bp070108j pmid: 17595111
4 Darnell S J, LeGault L, Mitchell J C (2008). KFC Server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res, 36(Web Server issue): W265-9
pmid: 18539611
5 Venkataraman Deepak, Suresh Babu, Ram Kumar Pandian, KalimuthuKalishwaralal, Sangiliyandi Guru Nathan (2009). Purification, Immobilization, and Characterization of NK on PHB Nanoparticles. Elsevier. Bioresour Technol, 100: 6644–6646
https://doi.org/10.1016/j.biortech.2009.06.057 pmid: 19608412
6 Dominguez C, Boelens R, Bonvin A M (2003). HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc, 125(7): 1731–1737
https://doi.org/10.1021/ja026939x pmid: 12580598
7 Dubey R, Kumar J, Agrawala D, Char T, Pusp P (2011). Isolation, Production, Purification, Assay and Characterization of Fibrinolytic Enzymes. Afr J Biotechnol, 10(8): 1408–1420
8 Holmstrom B (1965). Streptokinase assay on large agar diffusion plates. Acta Chem. Isolation, production, purification, assay and characterization of fibrinolytic enzymes (NK, Streptokinase and Urokinase) from bacterial sources. Afr J Biotechnol, 10(8): 1408–1420
9 Laemmli U K (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680–685
https://doi.org/10.1038/227680a0 pmid: 5432063
10 Matta H, Punj V. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. Internat J Food Microbiol, 42: 139–145
11 Mohanasrinivasan V, Subathra Devi C, Ritusree Biswas, Falguni Paul, MohorMitra, Selvarajan E (2013). Enhanced production of NK from UV mutated Bacillus sp. Bangladesh J Pharm, 1991–0088
12 Motaal A A, Fahmy I, El-Halawany A, Ibrahim N (2015). Comparative fibrinolytic activities of nattokinases from Bacillus subtilis var. natto. Pharm Sci Res, 7(2): 63–66
13 San-Lang H C, Liang T W, Lin Y D (2009). A Novel NK Produced By pseuodomonas sp. TKU015 Using Shrimp Shells As substrate, Elsevier, 2008. Process Biochem, 44: 70–76
14 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J C (2005). GROMACS: fast, flexible, and free. J Comput Chem, 26(16): 1701–1718
https://doi.org/10.1002/jcc.20291 pmid: 16211538
15 Wang C, Du M, Zheng D, Kong F, Zu G, Feng Y (2009). Purification and characterization of nattokinase from Bacillus subtilis natto B-12. J Agric Food Chem, 57(20): 9722–9729
https://doi.org/10.1021/jf901861v pmid: 19788184
16 Wu S M, Feng C, Zhong J, Huan L D (2011). Enhanced production of recombinant nattokinase in Bacillus subtilis by promoter optimization. World J Microbiol Biotechnol, 27(1): 99–106
https://doi.org/10.1007/s11274-010-0432-5 pmid: 22806784
[1] Ajeet, Arvind Kumar, Arun K. Mishra. Design, molecular docking, synthesis, characterization, biological activity evaluation (against MES model), in-silico biological activity spectrum (PASS analysis), toxicological and predicted oral rat LD50 studies of novel sulphonamide derivatives[J]. Front. Biol., 2018, 13(6): 425-451.
[2] Teetam Ghosal, Nikita Augustine, Ashwini Siddapur, Vaishnavi Babu, Merlyn Keziah Samuel, Subathra Devi Chandrasekaran. Strain improvement, optimization and purification studies for enhanced production of streptokinase from Streptococcus uberis TNA-M1[J]. Front. Biol., 2017, 12(5): 376-384.
[3] B. Senthilkumar,D. Meshachpaul,Rao Sethumadhavan,R. Rajasekaran. Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach[J]. Front. Biol., 2015, 10(6): 508-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed