Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

   优先出版

合作单位

优先出版
Please wait a minute...
选择: 合并摘要 显示/隐藏图片
Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production
Shimeng Kang, Zehua Pan, Jinjie Guo, Yexin Zhou, Jingyi Wang, Liangdong Fan, Chunhua Zheng, Suk Won Cha, Zheng Zhong
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0945-5
摘要   HTML   PDF (6773KB)

Solid oxide electrolysis cell (SOEC) is a promising water electrolysis technology that produces hydrogen or syngas through water electrolysis or water and carbon dioxide co-electrolysis. Green hydrogen or syngas can be produced by SOEC with renewable energy. Thus, SOEC has attracted continuous attention in recent years for the urgency of developing environmentally friendly energy sources and achieving carbon neutrality. Focusing on 1276 related articles retrieved from the Web of Science (WoS) database, the historical development of SOECs are depicted from 1983 to 2023 in this paper. The co-occurrence networks of the countries, source journals, and author keywords are generated. Moreover, three main clusters showing different content of the SOEC research are identified and analyzed. Furthermore, the scientometric analysis and the content of the high-cited articles of the research of different topics of SOECs: fuel electrode, air electrode, electrolyte, co-electrolysis, proton-conducting SOECs, and the modeling of SOECs are also presented. The results show that co-electrolysis and proton-conducting SOECs are two popular directions in the study of SOECs. This paper provides a straightforward reference for researchers interested in the field of SOEC research, helping them navigate the landscape of this area of study, locate potential partners, secure funding, discover influential scholars, identify leading countries, and access key research publications.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Reverse electrodialysis heat engine with helium-gap diffusion distillation: Energy efficiency analysis
Junyong Hu, Yukun Sun, Yali Hu, Haiyu Liu, Jiajie Zhang, Suxia Ma, Jiaxin Huang, Xueyi Tan, Ling Zhao
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0947-3
摘要   HTML   PDF (1216KB)

The depletion of energy resources poses a significant threat to the development of human society. Specifically, a considerable amount of low-grade heat (LGH), typically below 100 °C, is currently being wasted. However, efficient utilization of this LGH can relieve energy shortages and reduce carbon dioxide emissions. To address this challenge, reverse electrodialysis heat engine (REDHE) which can efficiently convert LGH into electricity has emerged as a promising technology in recent years. Extensive efforts have been dedicated to exploring more suitable thermal distillation technologies for enhancing the performance of REDHE. This paper introduces a novel REDHE that incorporates helium-gap diffusion distillation (HGDD) as the thermal separation (TS) unit. The HGDD device is highly compact and efficient, operating at a normal atmospheric pressure, which aligns with the operational conditions of the reverse electrodialysis (RED) unit. A validated mathematical model is employed to analyze the impacts of various operating and structural parameters on the REDHE performance. The results indicate that maintaining a moderate molality of the cold stream, elevating the inlet temperatures of hot and cold streams, lengthening hot- and cold-stream channels, and minimizing the thickness of helium gaps contribute to improving the REDHE performance. Especially, a maximum energy conversion efficiency of 2.96% is achieved by the REDHE when decreasing the thickness of helium gaps to 3 mm and increasing the length of stream channels to 5 m.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Data-driven consumer-phase identification in low-voltage distribution networks considering prosumers
Geofrey Mugerwa, Tamer F. Megahed, Maha Elsabrouty, Sobhy M. Abdelkader
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0946-4
摘要   HTML   PDF (1240KB)

Knowing the correct phase connectivity information plays a significant role in maintaining high-quality power and reliable electricity supply to end-consumers. However, managing the consumer-phase connectivity of a low-voltage distribution network is often costly, prone to human errors, and time-intensive, as it involves either installing expensive high-precision devices or employing field-based methods. Besides, the ever-increasing electricity demand and the proliferation of behind-the-meter resources have also increased the complexity of leveraging the phase connectivity problem. To overcome the above challenges, this paper develops a data-driven model to identify the phase connectivity of end-consumers using advanced metering infrastructure voltage and current measurements. Initially, a preprocessing method that employs linear interpolation and singular value decomposition is adopted to improve the quality of the smart meter data. Then, using Kirchoff’s current law and correlation analysis, a discrete convolution optimization model is built to uniquely identify the phase to which each end-consumer is connected. The data sets utilized are obtained by performing power flow simulations on a modified IEEE-906 test system using OpenDSS software. The robustness of the model is tested against data set size, missing smart meter data, measurement errors, and the influence of prosumers. The results show that the method proposed correctly identifies the phase connections of end-consumers with an accuracy of about 98%.

图表 | 参考文献 | 相关文章 | 多维度评价
Catalytic hydrodeoxygenation of pyrolysis bio-oil to jet fuel: A review
Zhongyang Luo, Wanchen Zhu, Feiting Miao, Jinsong Zhou
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0924-8
摘要   HTML   PDF (14924KB)

Bio-oil from biomass pyrolysis cannot directly substitute traditional fuel due to compositional deficiencies. Catalytic hydrodeoxygenation (HDO) is the critical and efficient step to upgrade crude bio-oil to high-quality bio-jet fuel by lowering the oxygen content and increasing the heating value. However, the hydrocracking reaction tends to reduce the liquid yield and increase the gas yield, causing carbon loss and producing hydrocarbons with a short carbon-chain. To obtain high-yield bio-jet fuel, the elucidation of the conversion process of biomass catalytic HDO is important in providing guidance for metal catalyst design and optimization of reaction conditions. Considering the complexity of crude bio-oil, this review aimed to investigate the catalytic HDO pathways with model compounds that present typical bio-oil components. First, it provided a comprehensive summary of the impact of physical and electronic structures of both noble and non-noble metals that include monometallic and bimetallic supported catalysts on regulating the conversion pathways and resulting product selectivity. The subsequent first principle calculations further corroborated reaction pathways of model compounds in atom-level on different catalyst surfaces with the experiments above and illustrated the favored C–O/C=O scission orders thermodynamically and kinetically. Then, it discussed hydrogenation effects of different H-donors (such as hydrogen and methane) and catalysts deactivation for economical and industrial consideration. Based on the descriptions above and recent researches, it also elaborated on catalytic HDO of biomass and bio-oil with multi-functional catalysts. Finally, it presented the challenges and future prospective of biomass catalytic HDO.

图表 | 参考文献 | 相关文章 | 多维度评价
Experimental study on current distribution in parallel-connected solid oxide fuel cell strings
Jia Lu, Qiang Hu, Jian Wu
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0941-9
摘要   HTML   PDF (2171KB)

To increase the power generated by solid oxide fuel cells (SOFCs), multiple cells have to be connected into a stack. Nonuniformity of cell performance is a worldwide concern in the practical application of stack, which is known to be unavoidable and caused by manufacturing and operating conditions. However, the effect of such nonuniformity on SOFCs that are connected in parallel has not been discussed in detail so far. This paper provides detailed experimental data on the current distribution within a stack with nonuniform cells in parallel connection, based on the basics of electricity and electrochemistry. Particular phenomena found in such a parallel system are the “self-discharge effect” in standby mode and the “capacity-proportional-load sharing effect” under normal operating conditions. It is believed that the experimental method and results proposed in this paper can be applied to other types of fuel cell or even other energy systems.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Syngas production by photoreforming of formic acid with 2D VxW1−xN1.5 solid solution as an efficient cocatalyst
Xiaoyuan Ye, Yuchen Dong, Ziying Zhang, Wengao Zeng, Bin Zhu, Tuo Zhang, Ze Gao, Anna Dai, Xiangjiu Guan
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0940-x
摘要   HTML   PDF (1813KB)

Formic acid (FA) is a potential biomass resource of syngas with contents of carbon monoxide (CO, 60 wt.%) and hydrogen (H2, 4.4 wt.%). Among the technologies for FA conversion, the photoreforming of FA has received widespread attention due to its use of green solar energy conversion technology and mild reaction conditions. Herein, a V–W bimetallic solid solution, VxW1−xN1.5 with efficient co-catalytic properties was first and facilely synthesized. When CdS was used as a photocatalyst, the activity performance of the V0.1W0.9N1.5 system was over 60% higher than that of the W2N3 system. The computational simulations and experiments showed the V0.1W0.9N1.5 had great metallic features and large work functions, contributing a faster photo-generated carrier transfer and less recombination, finally facilitating a great performance in cocatalyst for syngas production in photoreforming FA. This work provides an approach to synthesizing novel transition metal nitrides for photocatalysis.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO2 nanofluid
Bin Yang, Yuan Zhi, Yao Qi, Lingkang Xie, Xiaohui Yu
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0935-7
摘要   HTML   PDF (10578KB)

Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

图表 | 参考文献 | 相关文章 | 多维度评价
Review on thermal-science fundamental research of pressurized oxy-fuel combustion technology
Xinran Wang, Shiquan Shan, Zhihua Wang, Zhijun Zhou, Kefa Cen
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0931-y
摘要   HTML   PDF (7905KB)

As the next-generation oxy-fuel combustion technology for controlling CO2 emissions, pressurized oxy-fuel combustion (POC) technology can further reduce system energy consumption and improve system efficiency compared with atmospheric oxy-fuel combustion. The oxy-fuel combustion causes high CO2 concentration, which has a series of effects on the combustion reaction process, making the radiation and reaction characteristics different from air-fuel conditions. Under the pressurized oxy-fuel condition, the combustion reaction characteristics are affected by the coupling effect of pressure and atmosphere. The radiation and heat transfer characteristics of the combustion medium are also affected by pressure. In recent years, there have been many studies on POC. This review pays attention to the thermal-science fundamental research. It summarizes several typical POC systems in the world from the perspective of system thermodynamic construction. Moreover, it reviews, in detail, the current research results of POC in terms of heat transfer characteristics (radiant heat transfer and convective heat transfer), combustion characteristics, and pollutant emissions, among which the radiation heat transfer and thermal radiation model are the focus of this paper. Furthermore, it discusses the development and research direction of POC technology. It aims to provide references for scientific research and industrial application of POC technology.

图表 | 参考文献 | 相关文章 | 多维度评价
Application of multi-objective optimization based on Sobol sensitivity analysis in solar single-double-effect LiBr−H2O absorption refrigeration
Shiqi Zhao, Qingyang Li, Yongchao Sun, Dechang Wang, Qinglu Song, Sai Zhou, Jinping Li, Yanhui Li
Frontiers in Energy    https://doi.org/10.1007/s11708-024-0938-4
摘要   HTML   PDF (7310KB)

To improve the adaptability of solar refrigeration systems to different heat sources, a single-double-effect LiBr−H2O absorption refrigeration system (ARS) driven by solar energy was designed and analyzed. The system was optimized using a multi-objective optimization method based on Sobol sensitivity analysis to enhance solar energy efficiency and reduce costs. The model of the solar single-double-effect LiBr−H2O ARS was developed, and the continuous operation characteristics of the system in different configurations were simulated and compared. The results show that the average cooling time of the system without auxiliary heat source is approximately 8.5 h per day, and the double-effect mode (DEM) generates about 11 kW of cooling capacity during continuous operation for one week under the designated conditions, and the system with adding auxiliary heat source meet the requirements of daily cooling time, the solar fraction (SF) of the system reaches 59.29%. The collector area has a greater effect on SF, while the flowrate of the hot water circulating pump and the volume of storage tank have little effect on SF. The optimized SF increases by 3.22% and the levelized cost decreases by 10.18%. Moreover, compared with the solar single-effect LiBr−H2O ARS, the SF of the system is increased by 15.51% and 17.42% respectively after optimization.

图表 | 参考文献 | 相关文章 | 多维度评价
首页 | 前页 | 后页 | 尾页 共 4页 当前第 1页, 共33 篇