Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 469-474    https://doi.org/10.1007/s11708-010-0123-9
RESEARCH ARTICLE
Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system
Weilong WANG1(), Yukun HU2, Jinyue YAN3, Jenny NYSTR?M4, Erik DAHLQUIST1
1. M?lardalen University, SE-721 23 V?ster?s, Sweden; 2. Royal Institute of Technology, SE-100 44 Stockholm, Sweden; 3. M?lardalen University, SE-721 23 V?ster?s, Sweden; Royal Institute of Technology, SE-100 44 Stockholm, Sweden; 4. Eskilstuna Energi och Miljo AB, Eskilstuna, Sweden
 Download: PDF(175 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating or oil/pellet boilers are used to meet the heat demand. Extending the existing DH network to those spare areas is not economically feasible because of the small heat demand and the large investment required for the expansion. The mobilized thermal energy storage (M-TES) system is an alternative source of heat for detached buildings or sparse areas using industrial heat. In this paper, the integration of a combined heat and power (CHP) plant and an M-TES system is analyzed. Furthermore, the impacts of four options of the integrated system are discussed, including the power and heat output in the CHP plant. The performance of the M-TES system is likewise discussed.

Keywords Mobilized thermal energy system      district heating      thermal energy storage      combined heat and power      detached houses     
Corresponding Author(s): WANG Weilong,Email:weilong.wang@mdh.se   
Issue Date: 05 December 2010
 Cite this article:   
Weilong WANG,Yukun HU,Jinyue YAN, et al. Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system[J]. Front Energ Power Eng Chin, 2010, 4(4): 469-474.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0123-9
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/469
1 Swedish Energy Agency. Energy in Sweden 2008. Sweden, 2008
2 Joelsson A, Gustavsson L. District heating and energy efficiency in detached houses of differing size and construction. Applied Energy , 2009, 86(2): 126-134
doi: 10.1016/j.apenergy.2008.03.012
3 Eriksson M, Vamling L. Future use of heat pumps in Swedish district heating systems: short- and long-term impact of policy instruments and planned investments. Applied Energy , 2007, 84(12): 1240-1257
doi: 10.1016/j.apenergy.2007.02.009
4 Ozgener L, Hepbasli A, Dincer I. A key review on performance improvement aspects of geothermal district heating systems and applications. Renew Sustain Energy Rev , 2007, 11(8): 1675-1697
doi: 10.1016/j.rser.2006.03.006
5 Bareli L, Bidini G, Pinchi E M. Implementation of a cogenerative district heating system: dimensioning of the production plant. Energy Build , 2007, 39(6): 658-664
doi: 10.1016/j.enbuild.2006.10.005
6 Gustavsson L, Karlsson ?. Heating detached houses in urban areas. Energy , 2003, 28(8): 851-875
doi: 10.1016/S0360-5442(02)00165-2
7 Gustavsson L, Karlsson ?. A system perspective on the heating of detached houses. Energy Policy , 2002, 30(7): 553-574
doi: 10.1016/S0301-4215(01)00128-8
8 Mahapatra K, Gustavsson L. Influencing Swedish homeowners to adopt district heating system. Applied Energy , 2009, 86(2): 144-154
doi: 10.1016/j.apenergy.2008.03.011
9 Reidhav C, Werner S. Profitability of sparse district heating. Appl Energy , 2008, 85(9): 867-877
doi: 10.1016/j.apenergy.2008.01.006
10 Nilsson SF, Reidhav C, Lygenerud K, Werner S. Sparse district-heating in Sweden. Appl Energy , 2008, 85(7): 555-564
doi: 10.1016/j.apenergy.2007.07.011
11 Kaizawa A, Kamano H, Kawai A, Jozuka T, Senda T, Maruoka N, Akiyama T. Thermal and flow behaviors in heat transportation container using phase change materials. Energy Convers Management , 2008, 49(4): 698-706
doi: 10.1016/j.enconman.2007.07.022
12 Wang W L, Yan J Y, Dahlquist E, Nystr?m J. A new mobilized energy storage system for industrial waste heat recovery for distributed heat supply. The First International Conference on Applied Energy (ICAE09) . Hong Kong, January, 2009
13 Hasnain S M. Review on sustainable thermal energy storage technologies; part I: heat storage materials and techniques. Energy Convers Manage , 1998, 39(11): 1127-1137
doi: 10.1016/S0196-8904(98)00025-9
14 Farid M M, Khudhair A M, Razack S A K, Hallaj S A. A review on phase change energy storage: materials and applications. Energy Convers Manage , 2004, 45(9,10): 1597-1615
15 Tyagi V V, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev , 2007, 11(6): 1146-1166
doi: 10.1016/j.rser.2005.10.002
16 Zalba B, Marin J M, Cabeza L F, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng , 2003, 23(3): 251-283
doi: 10.1016/S1359-4311(02)00192-8
17 Wang W L, Yang X X, Fang Y T, Ding J. Preparation and performance of form- stable polyethylene glycol/silicon dioxide composites as solid- liquid phase change materials. Applied Energy , 2009, 86(2): 170-174
doi: 10.1016/j.apenergy.2007.12.003
18 Wang W L, Yang X X, Fang Y T, Ding J, Yan J Y. Enhaned thermal condcutivity and thermal performance of form-stable composite phase change mateirals buy using β-Aluminum nitride. Applied Energy , 2009, 86(7): 1196-1200
doi: 10.1016/j.apenergy.2008.10.020
19 Wang W L, Yang X X, Fang Y T, Ding J, Yan J Y. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Applied Energy , 2009, 86(9): 1479-1483
doi: 10.1016/j.apenergy.2008.12.004
20 Bj?rheden R, Niklasson T, Wahlen M. Biomass in Sweden. Biomass-fired CHP plant in Eskilstuna. Refocus , 2001, 14-18
[1] Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE. Viability of a concentrated solar power system in a low sun belt prefecture[J]. Front. Energy, 2020, 14(4): 850-866.
[2] Yi DOU, Keijiro OKUOKA, Minoru FUJII, Hiroki TANIKAWA, Tsuyoshi FUJITA, Takuya TOGAWA, Liang DONG. Proliferation of district heating using local energy resources through strategic building-stock management: A case study in Fukushima, Japan[J]. Front. Energy, 2018, 12(3): 411-425.
[3] Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage[J]. Front. Energy, 2017, 11(4): 461-471.
[4] T. JAYABARATHI, Afshin YAZDANI, V. RAMESH, T. RAGHUNATHAN. Combined heat and power economic dispatch problem using the invasive weed optimization algorithm[J]. Front Energ, 2014, 8(1): 25-30.
[5] Afshin YAZDANI, T. JAYABARATHI, V. RAMESH, T. RAGHUNATHAN. Combined heat and power economic dispatch problem using firefly algorithm[J]. Front Energ, 2013, 7(2): 133-139.
[6] Gaofeng CHEN, Xuejing ZHENG, Lin CONG. Energy efficiency and carbon dioxide emissions reduction opportunities in district heating source in Tianjin[J]. Front Energ, 2012, 6(3): 285-295.
[7] C Y ZHAO, D ZHOU, Z G WU. Heat transfer of phase change materials (PCMs) in porous materials[J]. Front Energ, 2011, 5(2): 174-180.
[8] Lin FU, Yan LI, Yi JIANG, Shigang ZHANG, . A district heating system based on absorption heat exchange with CHP systems[J]. Front. Energy, 2010, 4(1): 77-83.
[9] ZHAO Jun, CHEN Yan, LI Xinguo. Optimization for operating modes based on simulation of seasonal underground thermal energy storage[J]. Front. Energy, 2008, 2(3): 298-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed