Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2012, Vol. 6 Issue (1) : 35-46    https://doi.org/10.1007/s11708-012-0169-y
RESEARCH ARTICLE
Modeling and control of photovoltaic energy conversion connected to the grid
Rebei NAJET(), Ben Ghanem BELGACEM, Hasnaoui OTHMAN
Unit of Research (RME), INSAT, Tunisia; Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia
 Download: PDF(475 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents modeling and control of a photovoltaic generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).

Keywords photovoltaic generator (PVG)      maximum power point tracker      grid-connected      static converters     
Corresponding Author(s): NAJET Rebei,Email:najet_r@yahoo.com   
Issue Date: 05 March 2012
 Cite this article:   
Rebei NAJET,Ben Ghanem BELGACEM,Hasnaoui OTHMAN. Modeling and control of photovoltaic energy conversion connected to the grid[J]. Front Energ, 2012, 6(1): 35-46.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0169-y
https://academic.hep.com.cn/fie/EN/Y2012/V6/I1/35
Fig.1  General diagram of grid connected PV system
Fig.2  Solar panels
Fig.3  Equivalent electrical-circuit for a real PV cell
Fig.4  Equivalent circuit
Fig.5  Vector diagram editing energy transfer network
Fig.6  Evolution of the production of the solar cells in the world
Fig.7  Voltage control of the transfer power
Fig.8  Current control of the transfer power
Fig.9  Flowchart of the proposed MPPT method
Fig.10  p=(p) characteristics of a PV cell
Fig.11  Comparison between the experimental curve and those calculated with the extracted parameters at 15°C
Fig.12  Comparison between the experimental . curves and those calculated with the extracted parameters at 32°C
Pc/WIopt/AVopt/V)Vco/VIcc/Anumber of celltype of cellefficiency/%
502.917.2213.436poly11.3
Tab.1  Characteristics of the PV module
E/(W·m-2) (@15°C )Rs/?Rp/?Ios/AVT/V
4000.62455727.041.0 e-0061.4382
5000.63598471.241.4 e-0061.4371
6000.68315568.371.4 e-0061.4103
7000.68936673.061.7 e-0061.4050
8000.75259674.062.5 e-0061.4319
Tab.2  Evolution of , , and under different irradiance at =15°C
E/(W·m-2)(@32°C)Rs/?Rp/?Ios/AVT/V
4000.32387386.22345.5955e-0061.5155
4500.32895392.27656.0231e-0061.5128
6500.40311211.71628.8751e-0061.5146
7000.47695209.23259.1939e-0061.5171
8000.48292248.61411.0934e-0051.5180
9000.58926258.50185.1389e-0061.4083
10000.59067259.20006.7197e-0061.4128
Tab.3  Evolution of , , and under different irradiance at =35°C
Fig.13  Evolution of active power (reference/measure) injected in the grid
Fig.14  Evolution of voltages (reference/measure) injected in the grid
Fig.15  Solar radiation
Fig.16  Variation of active and reactive power (reference/measure) injected in the grid
Fig.17  Evolution of voltages (reference/measure) injected in the grid
Fig.18  Inverter output voltage after and before filtering
Fig.19  Effeciency of transferred power to the grid with voltage control
Fig.20  Variation of active and reactive power (reference/measure) injected in the grid
Fig.21  Evolution of currents (reference/measure) injected in the grid
Fig.22  Zoom in evolution of currents (reference/measure) injected in the grid
Fig.23  Variation of active and reactive power (reference/measure) injected in the grid
Fig.24  Zoom in evolution of current (reference/measure) injected in the grid
Fig.25  Evolution of the current injected in the grid
Fig.26  Efficiency of the transferred power to the grid with current control
1 International Electrotechnical Commission. Characteristics of the Utility Interface for Photovoltaic (PV) Systems. Report of IEC 61727 , 2002
2 Blaabjerg F, Chen Z, Kjaer S. Power electronics as efficient interface in dispersed power generation systems. IEEE Transactions on Power Electronics , 2004, 19(5): 1184–1194
doi: 10.1109/TPEL.2004.833453
3 Najet R, Belgacem B G, Hasnaoui O, Rachid D. Identification of parameters of a PV module from I-V characteristics tacken under different solar radiation. In: 11th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Monastir, Tunisia , 2010
4 Masoum M A S, Dehbonei H, Fuchs E F. Theoretical and experimental analysis of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Transactions on Energy Conversion , 2002, 17(4): 514–522
doi: 10.1109/TEC.2002.805205
5 Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding mode observer for estimation of solar array current in the grid connected photovoltaic system. IEEE Transactions on Industrial Electronics , 2006, 53(4): 1027–1035
doi: 10.1109/TIE.2006.878331
6 Hasnaoui O, Salem I, Mimounu M F, Dhifaoui R. Modelling and Control of a Variable Speed Wind Energy Conversion Turbine driven Synchronous Generator Connected to the Grid. In: Proceedings of the 6th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Stevens Point, USA: World Scientific and Engineering Academy and Society (WSEAS) , 2006
7 Cecati C, Dell'Aquila A, Liserre M. A novel three-phase single-stage distributed power inverter. IEEE Transactions on Power Electronics , 2004, 19(5): 1226–1233
doi: 10.1109/TPEL.2004.835112
8 Kim I S. Robust maximum power point tracker using sliding mode controller for three phase grid connected photovoltaic system. Solar Energy , 2007, 81(3): 405–414
doi: 10.1016/j.solener.2006.04.005
9 Carletti R L, Lopes C G, Barbosa P G. Active & reactive power control scheme for a grid-connected photovoltaic generation system based on VSI with selective harmonic eliminations. In: 8th Power Electronics Brazilian Conference (COBEP). Recife, Brazil , 2005, 129–134
10 Cavalcanti M C, Azevedo G M S, Oliveira K C, Amaral B A, Neves F A S, Lins Z D. A grid connected photovoltaic generation system with harmonic and reactive power compensation. In: 8th Power Electronics Brazilian Conference (COBEP). Recife, Brazil , 2005, 135–140
11 Najet R, Belgacem B G, Hasnaoui O. Control of a PV energy conversion connected to the grid. In: 6th International Conference on Electrical Systems and Automatic Control (JTEA’2010). Hammamet, Tunisia , 2010
12 Azeb M. A new maximum power point tracking for photovoltaic systems. World Academy of Science. Engineering and Technology , 2004, 44: 571–574
13 Villalva M G, Gazoli J R, Filho E R. Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics , 2009, 24(5): 1198–1208
doi: 10.1109/TPEL.2009.2013862
14 Garrigós A, Blanes J M, Carrasco J A, Ejea J B. Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation. Renewable Energy , 2007, 32(6): 1059–1076
doi: 10.1016/j.renene.2006.08.004
15 de Blas M A, Torres J L, Prieto E, Garc??a A. Selecting a suitable model for characterizing photovoltaic devices. Renewable Energy , 2002, 25(3): 371–380
doi: 10.1016/S0960-1481(01)00056-8
16 Dorofte C, Borupl U, Blaabjerg F. A combined two method MPPT control scheme for grid-connected photovoltaic systems. In: Proceedings of EPE 2005 . Dresden, Germany: EPE Association, 2005
17 Jiang J A, Huang T L, Hsiao Y T, Chen C H. Maximum power tracking for photovoltaic power systems. Tamkang Journal of Science and Engineering , 2005, 8(2): 147–153
18 Hiyama T, Kouzuma S, Imakubo T. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Transactions on Energy Conversion , 1995, 10(2): 360–367
doi: 10.1109/60.391904
20 Wang L, Lin Y H. Dynamic stability analysis of a photovoltaic array connected to a large utility grid. In: Proceedings of 2000 IEEE Power Engineering Society Winter Meeting. Singapore , 2000, 476–480
21 Hwang I H, Ahn K S, Lim H C, Kim S S. Design, development and performance of a 50 kW grid connected PV system with three phase current-controlled inverter. In: Photovoltaic Specialists Conference, Conference Record of the 28th IEEE. Anchorage, USA , 2000, 1664–1667
22 Hamouda M A, Sa?di M, Louchene A, Hamouda C, Malek A. Etude et réalisation d’un système intelligent d’alimentation en énergie électrique d’une habitation en milieu urbain avec injection dans le réseau. Revue des Energies Renouvelables , 2011, 14(2): 187–202
[1] Amir AHADI,Seyed Mohsen MIRYOUSEFI AVAL,Hosein HAYATI. Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems[J]. Front. Energy, 2016, 10(3): 308-318.
[2] Najet REBEI,Ali HMIDET,Rabiaa GAMMOUDI,Othman HASNAOUI. Implementation of photovoltaic water pumping system with MPPT controls[J]. Front. Energy, 2015, 9(2): 187-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed