Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2012, Vol. 6 Issue (2) : 122-128    https://doi.org/10.1007/s11708-012-0175-0
RESEARCH ARTICLE
A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy
Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(251 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the increasingly extensive utilization of liquefied natural gas (LNG) in China today, sustainable and effective using of LNG cold energy is becoming increasingly important. In this paper, the utilization of LNG cold energy in seawater desalination system is proposed and analyzed. In this system, the cold energy of the LNG is first transferred to a kind of refrigerant, i.e., butane, which is immiscible with water. The cold refrigerant is then directly injected into the seawater. As a result, the refrigerant droplet is continuously heated and vaporized, and in consequence some of the seawater is simultaneously frozen. The formed ice crystal contains much less salt than that in the original seawater. A simplified model of the direct-contact heat transfer in this desalination system is proposed and theoretical analyses are conducted, taking into account both energy balance and population balance. The number density distribution of two-phase bubbles, the heat transfer between the two immiscible fluids, and the temperature variation are then deduced. The influences of initial size of dispersed phase droplets, the initial temperature of continuous phase, and the volumetric heat transfer coefficient are also clarified. The calculated results are in reasonable agreement with the available experimental data of the R114/water system.

Keywords liquefied natural gas (LNG)      cold energy utilization      desalination      direct-contact heat transfer     
Corresponding Author(s): JU Yonglin,Email:yju@sjtu.edu.cn   
Issue Date: 05 June 2012
 Cite this article:   
Qingqing SHEN,Wensheng LIN,Anzhong GU, et al. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0175-0
https://academic.hep.com.cn/fie/EN/Y2012/V6/I2/122
Fig.1  Schematic diagram of the physical model
Fig.2  Heat transfer coefficient for a single dispersed bubble versus
Fig.3  Distribution of the number of dispersed phase bubbles in the system versus at different time with initial radius = 1.5 mm
(a) = 1 s; (b) = 3 s; (c) = 5 s; (d) = 10 s; (e) = 15 s; (f) = 20 s
Fig.4  Temperature of continuous phase liquid versus time
Fig.5  Total heat transfer rate versus time with different initial radius
Fig.6  Volumetric heat transfer coefficient versus time with different initial radius
Fig.7  Volumetric heat transfer coefficient versus time at the initial radius of the dispersed phase droplet = 2 mm
Fig.8  Comparison of calculation and experimental data of volumetric heat transfer coefficient
1 Gu Y, Ju Y L. LNG-FPSO: Offshore LNG solution. Frontiers of Energy and Power Engineering in China , 2008, 2(3): 249–255
doi: 10.1007/s11708-008-0050-1
2 Gu Y, Ju Y L. Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields. Applied Energy , 2010, 87(11): 3393–3400
doi: 10.1016/j.apenergy.2010.04.032
3 Li Q Y, Ju Y L. Design and analysis of liquefaction process for offshore associated gases. Applied Thermal Engineering , 2010, 30(11): 2518–2525
doi: 10.1016/j.applthermaleng.2010.07.001
4 Gao T, Lin W S, Gu A Z, Gu M. Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling. Applied Energy , 2010, 87(7): 2141–2147
doi: 10.1016/j.apenergy.2009.12.010
5 Li Q Y, Wang L, Ju Y L. Liquefaction and impurity separation of oxygen bearing coal-bed methane. Frontiers of Energy and Power Engineering in China , 2010, 4(3): 319–325
doi: 10.1007/s11708-010-0115-9
6 Maxwell D, Zhu Z. Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Economics , 2011, 33(2): 217–226
doi: 10.1016/j.eneco.2010.06.012
7 Xing Y, Liu M. Status quo and prospect analysis on LNG industry in China. Natural Gas Industry , 2009, 29(1): 120–123
8 Shi G H, Jing Y Y, Wang S L, Zhang X T. Development status of liquefied natural gas industry in China. Energy Policy , 2010, 38(11): 7457–7465
doi: 10.1016/j.enpol.2010.08.032
9 Lin W S, Zhang N, Gu A Z. LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure. Energy , 2010, 35(11): 4383–4391
doi: 10.1016/j.energy.2009.04.036
10 Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy , 2006, 31(10,11): 1666–1679
11 Cravalho E, McGrath J, Toscano W. Thermodynamic analysis of the re-gasification of LNG for the desalination of seawater. Cryogenics , 1977, 17(3): 135–139
doi: 10.1016/0011-2275(77)90272-7
12 Antonelli A. Desalinated water production at LNG-terminals. Desalination , 1983, 45(1–3): 383–390
doi: 10.1016/0011-9164(83)87052-0
13 Sideman S, Shabtai H. Shabtai, H. Direct-contact heat transfer between a single drop and an immiscible liquid medium. Canadian Journal of Chemical Engineering , 1964, 42(3): 107–117
doi: 10.1002/cjce.5450420305
14 Sideman S, Taitel Y. Direct-contact heat transfer with change of phase: Evaporation of drops in an immiscible liquid media. International Journal of Heat and Mass Transfer , 1964, 7(11): 1273–1289
doi: 10.1016/0017-9310(64)90068-7
15 Sideman S, Isenberg J, Isenberg J. Direct-contact heat transfer with change of phase: Bubble growth in three-phase systems. Desalination , 1967, 2(2): 207–214
doi: 10.1016/S0011-9164(00)84138-7
16 Sideman S, Hirsch G. Direct-contact heat transfer with change of phase. III: Analysis of the transfer mechanism of drops evaporating in immiscible liquid media. Israel Journal of Technology , 1964, 2(2): 234–241
17 Tochitani Y, Mori Y, Komotori K. Vaporization of single liquid drops in an immiscible liquid, Part I: Forms and motions of vaporizing drops. Warme-und Stoffubertragung , 1977, 10(1): 51–59
doi: 10.1007/BF02570666
18 Tochitani Y, Nakagawa T, Mori Y, Komotori K. Vaporization of single liquid drops in an immiscible liquid, Part II: Heat transfer characteristics. Warme-und Stoffubertragung , 1977, 10(2): 71–79
doi: 10.1007/BF01682700
19 Raina G, Grover P. Direct contact heat transfer with change of phase: Theoretical model. AIChE Journal. American Institute of Chemical Engineers , 1982, 28(3): 515–517
doi: 10.1002/aic.690280324
20 Raina G, Grover P. Direct contact heat transfer with change of phase: Theoretical model incorporating sloshing effects. AIChE Journal. American Institute of Chemical Engineers , 1985, 31(3): 507–509
doi: 10.1002/aic.690310326
21 Raina G, Wanchoo R, Grover P. Direct contact heat transfer with phase change: Motion of evaporating droplets. AIChE Journal. American Institute of Chemical Engineers , 1984, 30(5): 835–837
doi: 10.1002/aic.690300526
22 Battya P, Raghavan V, Seetharamu K. Parametric studies on direct contact evaporation of a drop in an immiscible liquid. International Journal of Heat and Mass Transfer , 1984, 27(2): 263–272
doi: 10.1016/0017-9310(84)90217-5
23 Sideman S, Hirsch G, Gat Y. Direct-contact heat transfer with change of phase: Effect of the initial drop size in three-phase heat exchangers. AIChE Journal. American Institute of Chemical Engineers , 1965, 11(6): 1081–1087
doi: 10.1002/aic.690110622
24 Sideman S, Gat Y. Direct contact heat transfer with change of phase: Spray-column studies of a three-phase heat exchanger. AIChE Journal. American Institute of Chemical Engineers , 1966, 12(2): 296–303
doi: 10.1002/aic.690120217
25 Seetharamu K, Battya P. Direct contact evaporation between two immiscible liquids in a spray column. Journal of Heat Transfer , 1989, 111(1): 780–785
doi: 10.1115/1.3250751
26 Mori Y. An analytic model of direct-contact heat transfer in spray-column evaporators. AIChE Journal. American Institute of Chemical Engineers , 1991, 37(4): 539–546
doi: 10.1002/aic.690370407
27 Kiatsiriroat T, Thalang K, Dabbhasuta S. Ice formation around a jet stream of refrigerant. Energy Conversion and Management , 2000, 41(3): 213–221
doi: 10.1016/S0196-8904(99)00112-0
28 Kiatsiriroat T, Vithayasai S, Vorayos N, Nuntaphan A, Vorayos N. Heat transfer prediction for a direct contact ice thermal energy storage. Energy Conversion and Management , 2003, 44(4): 497–508
doi: 10.1016/S0196-8904(02)00077-8
29 Byrd L, Mulligan J. A population balance approach to direct-contact secondary refrigerant freezing. AIChE Journal. American Institute of Chemical Engineers , 1986, 32(11): 1881–1888
doi: 10.1002/aic.690321114
30 Core K, Mulligan J. Heat transfer and population characteristics of dispersed evaporating droplets. AIChE Journal. American Institute of Chemical Engineers , 1990, 36(8): 1137–1144
doi: 10.1002/aic.690360803
31 Song M, Steiff A, Weinspach P. The analytical solution for a model of direct contact evaporation in spray columns. International Communications in Heat and Mass Transfer , 1996, 23(2): 263–272
doi: 10.1016/0735-1933(96)00011-5
32 Song M, Steiff A, Weinspach P. Parametric analysis of direct contact evaporation process in a bubble column. International Journal of Heat and Mass Transfer , 1998, 41(12): 1749–1758
doi: 10.1016/S0017-9310(97)00241-X
33 Song M, Steiff A, Weinspach P. Direct-contact heat transfer with change of phase: A population balance model. Chemical Engineering Science , 1999, 54(17): 3861–3871
doi: 10.1016/S0009-2509(99)00029-9
34 Marchal P, David R, Klein J, Villermaux J. Crystallization and precipitation engineering-I: An efficient method for solving population balance in crystallization with agglomeration. Chemical Engineering Science , 1988, 43(1): 59–67
doi: 10.1016/0009-2509(88)87126-4
[1] Zhaorui ZHAO, Bao YANG, Ziwen XING. Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system[J]. Front. Energy, 2019, 13(1): 193-203.
[2] Changming LING, Yifei WANG, Chunhua MIN, Yuwen ZHANG. Economic evaluation of reverse osmosis desalination system coupled with tidal energy[J]. Front. Energy, 2018, 12(2): 297-304.
[3] Feier XUE,Yu CHEN,Yonglin JU. A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization[J]. Front. Energy, 2016, 10(3): 363-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed