Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2013, Vol. 7 Issue (1) : 49-55    https://doi.org/10.1007/s11708-012-0217-7
RESEARCH ARTICLE
Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed induction generator
Ridha CHEIKH1, Arezki MENACER1(), Said DRID2, Mourad TIAR1
1. LGEB Laboratory, Department of Electrical Engineering, Biskra University, Biskra 07000, Algeria; 2. LSPIE Laboratory, Department of Propulsion-Induction Electromagnetic Electrical Engineering, University of Batna, Batna 05000, Algeria
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.

Keywords doubly-fed induction generator (DFIG)      vector control      fuzzy logic controller      optimization      power factor unity      active and reactive power     
Corresponding Author(s): MENACER Arezki,Email:menacer_arezki@hotmail.com   
Issue Date: 05 March 2013
 Cite this article:   
Ridha CHEIKH,Arezki MENACER,Said DRID, et al. Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed induction generator[J]. Front Energ, 2013, 7(1): 49-55.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0217-7
https://academic.hep.com.cn/fie/EN/Y2013/V7/I1/49
Fig.1  DFIG structure control
Fig.2  Oriented flux and angle calculation
Fig.3  Fuzzy controller interne structure
Fig.4  Block diagram of DFIG control scheme
Fig.5  Membership functions for inputs and output
PGPMPPPTPZENTPNPNMNGE, ?Ur, dE
ZEPTPNPNMNGNGNGNGNGNG
PTPZEPTPNPNMNGNGNGNGNM
PPPTPZEPTPNPNMNGNGNGNP
PMPPPTPZEPTPNPNMNGNGNTP
PGPMPPPTPZEPTPNPNMNGZE
PGPGPMPPPTPZEPTPNPNMPG
PGPGPGPMPPPTPZEPTPNPPM
PGPGPGPGPMPPPTPZEPTPPP
PGPGPGPGPGPMPPPTPZEPTP
Tab.1  Rule table of the fuzzy controller
Fig.6  Stator active (WAT) and reactive power (VAR) response
Fig.7  Stator power factor
Fig.8  Stator voltage (V) and current (A)
Fig.9  Stator active (WAT) and reactive (VAR) power responses
Fig.10  Stator power factor
1 Bekakra Y, Attous D B. Sliding mode controls of active and reactive power of a DFIG with MPPT for variable speed wind energy conversion. Australian Journal of Basic and Applied Sciences , 2011, 5(12): 2274–2286
2 Cheikh R, Drid S, Menacer A. The doubly fed induction generator powers flow control in variable speed. In: Proceedings of 6th International Conference on Electrical Engineering. Batna, Algeria , 2010
3 Ourici A. Power control in a doubly fed induction machine. World Academy of Science. Engineering and Technology , 2011, 77(53): 51–54
4 Reznik L. Fuzzy Controllers. Elsevier: Newnes , 1997
5 Chung G B, Choi J. Application of fuzzy PI control algorithm as stator power controller of a double-fed induction machine in wind power generation. Journal of Power Electronics , 2009, 9(1): 109–116
6 Drid S, Makouf A, Nait-Said M S, Tadjine M. The doubly fed induction generator robust vector control based on Lyapunov method. Transactions on Systems, Signals & Devices , 2009, 4(2): 1–13
7 Camblong H. Minimisation de l’impact des perturbation d’origine eolienne dans la génération d’electricité par des aérogénérateurs à vitesse variable. Thèse de Doctorat de l’école Nationale Supérieure d'Arts et Métiers Centre de Bordeaux , 2003
8 Poitiers F. Etude et commande de génératrices asynchrones pour l'utilisation de l'energie eolienne. Thèse de Doctorat de l’Université de Nantes , 2003
9 Cheikh R. Commande Robuste de la Génératrice à Iinduction Double Alimentée. Thèse de Magistère, Université de Biskra , 2011
[1] Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm[J]. Front. Energy, 2020, 14(3): 649-665.
[2] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[3] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[4] Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE. Distributionally robust optimization of home energy management system based on receding horizon optimization[J]. Front. Energy, 2020, 14(2): 254-266.
[5] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[6] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[7] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[8] Chongzhe ZOU, Huayi FENG, Yanping ZHANG, Quentin FALCOZ, Cheng ZHANG, Wei GAO. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Front. Energy, 2019, 13(2): 284-295.
[9] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[10] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[11] Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG. Decoupling optimization of integrated energy system based on energy quality character[J]. Front. Energy, 2018, 12(4): 540-549.
[12] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[13] Huayi ZHANG, Can ZHANG, Fushuan WEN, Yan XU. A comprehensive energy solution for households employing a micro combined cooling, heating and power generation system[J]. Front. Energy, 2018, 12(4): 582-590.
[14] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[15] Lanz UY, Patric UY, Jhoenson SIY, Anthony Shun Fung CHIU, Charlle SY. Target-oriented robust optimization of a microgrid system investment model[J]. Front. Energy, 2018, 12(3): 440-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed