Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    0, Vol. Issue () : 6-18    https://doi.org/10.1007/s11708-012-0219-5
REVIEW ARTICLE
Application of nanotechnologies in the energy sector: A brief and short review
Ferric CHRISTIAN, EDITH, SELLY, Dendy ADITYAWARMAN, Antonius INDARTO()
Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
 Download: PDF(479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy is of great importance in human life because of its benefits as the main resource for human activity. According to International Energy Agency (IEA), energy demands are expected to continue increasing until 2030. Because energy demand will never decrease, it is necessary to develop modern technology, such as nano-based technology, in order to obtain a more effective and efficient process to produce more energy. The application of nano technology or nano material in the field of energy, which involves lithium-ion battery, fuel cell, light emitting diode (LED), ultra-capacitor, and solar cell (including Gr?tzel cell), is a hot topic in many scientific researches. Unfortunately, its current development is hampered by the expensive cost of production compared to conventional technologies. Therefore, priority should be given to nano technology in the energy sector order to obtain higher efficiency, lower production cost, and easier in its application.

Keywords nanotechnology      energy      batteries      fuel cell      Gr?tzel cell      solar cell     
Corresponding Author(s): INDARTO Antonius,Email:antonius.indarto@che.itb.ac.id   
Issue Date: 05 March 2013
 Cite this article:   
Ferric CHRISTIAN,EDITH,SELLY, et al. Application of nanotechnologies in the energy sector: A brief and short review[J]. Front Energ, 0, (): 6-18.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0219-5
https://academic.hep.com.cn/fie/EN/Y0/V/I/6
Fig.1  World energy consumption history and future prediction []
Fig.2  Current world potential energy sources/reserves []
Energy sourcesEnergy conversionEnergy distributionEnergy storageEnergy uses
RegenerativePhotovoltaics: Nano-optimized cells (polymeric, dye, quantum dot, thin film, multiple junction), antireflective coatingsWind energy: nanocomposites for ligheter and stronger rotor blades, wear and corrosion protection nano-coatings for bearings and power trains etc.Geothermal: nano-coatings and-composites for wear resistant drilling equipmentHydro-/Tidal Power: Nano-coatings for corrosion protectionBiomass energy: Yield optimization by nano-based precision farming (nanosensors, controlled release and storage of pesticides and nutrients)Fossil fuel○ Wear and corrosion protection of oil and gas drilling equipment, nanoparticles for improved oil yields.Nuclear○ Nano-composite for radiation shielding and protection (personal equipment, container etc.), long term option for nuclear fusion reactorsGas Turbines○ Heat and corrosion protection of turbine blades (e.g. ceramic or intermetallic nano-coatings) for more efficient turbine power plantsThermoelectrics○ Nanostructural compounds (interface design, nanorods) for efficient thermoelectrical power generation (e.g. usage of waste heat in automobiles or body heat for personal electronics (long term))Fuel cells○ Nano-optimized membranes and electrodes for efficient fuel cells (PEM) for applications in automobile/mobile electronics● Hydrogen Generation○ Nano catalysts and new processes for more efficient hydrogen generation (eg. Photoelectrical, electrolysis, biophotonic)Combustion Engines○ Wear and corrosion protection of engine components (nano-composite/nano coatings, nano particles as the fuel additive etc.)Electrical motor○ Nano-composites for superconducting components in electro motorsPower TransmissionHigh-voltage transmission: Nano filters for electrical isolation system, soft magnetic nano material for efficient current transformationSuperconductors (SC): Optimized high temperature SC’s based on nanoscale interface design for loss-less power transmissionCNT power lines: superconductor cables based on carbon nanotubes (long term)Wireless power transmission: using laser, micrwaves, or electromagnetic resonance based on nano-optimized components (long term)Smart Grids○ Nanosensors (e.g. magnetoresistive) for intelligent and flexible grid management capable of managing higly decentralised power feedsHeat transfer○ Efficient heat in- and outflow based on nano-optimized heat exchangers and conductors (e.g. based on CNT composites) in industries and buildingsElectrical EnergyBatteries: Optimized Li-ion batteries by using nanostructured electrodes and flexible, ceramic separator foils, application in mobile electronics, automobile, flexible load management in power grids (mid term)Supercapacitors: Nanomaterials for electrodes (carbon-aerogels, CNT, metall (-oxides) and elektrolytes for higher energy densities)Chemical Energy○ Hydrogen: nanoporous materials (organometals, metal hydrides) for applicatio in micro fuel cells formobile electronics or in automobile (long term)Fuel reforming/Refining: nano-catalysts for optimized fuel production (oil refining, desulphurization, coal liquefaction)Fuel Tanks: Gas tight fuels tanks based on nano-composites for reduction of hydrocarbon emissionsThermal EnergyPhase change materials: Encapsulated PCM for air conditioning of buildingsAdsorptive storage: nano-porous materials (eg. Zeolites) for reversible heat storage in buildings and heating netsThermal insulation○ Nanoporous foams and gels (aerogels, polymer foams) for thermal insulation of building and industrial processAir conditioning○ Intelligent mangement of light and heat flux in buildings by electrochromic windows, micro mirror arrays, or IR-reflectorLightweight ConstructionLightweight construction materials using nano-composites (carbon nanotubes, metal-matrix composites, nano coated light metals, ultra performance concrete, polymer-composites)Industrial Process○ Substitution of energy intensive processes based on nanotech process inovation (e.g. nano-catalysts, self-assembling processes, etc.)Lighting○ Energy efficient lighting systems (e.g.: LED and OLED)
Tab.1  Possible nano-material developments [,]
Fig.3  Schematic illustration of encapsulation process of lithium-ion nano particles in tin hollow carbon balls []
Fig.4  Three schematic structures of carbon nanotubes []
MaterialTemperaturePressure/MPaMax. mass fraction of H2/%Reference
SWNT 100%133K (-140°C)0.045-10 (prediction)Dillon et al. [29]
SWNT high purityAmbient0.067~3.5-4.5Dillon et al. [31]
SWNT ~50%300 K (27°C)10.1~4.2Liu et al. [32]
SWNT high purity80 K (-193°C)~78.25Ye et al. [33]
MWNT300-700 K (27°C-427°C)Ambient0.25Wu et al. [34]
SWNT-TiAl0.1V0.04Ambient0.067~7Dillon et al. [35]
SWNT-Ti-6Al-4VAmbient0.081.47Hirscher et al. [36]
SWNT-FeAmbient0.08<0.005Hirscher et al. [36]
SWNT ball milled in ArAmbient0.08<0.1Hirscher et al. [37]
SWNT ball milled in D2Ambient0.91.0Hirscher et al. [37]
Li-CNT473-673 (200°C-400°C)0.120Chen et al. [25]
Li-CNT<313K (40°C)0.114Chen et al. [25]
Li-CNT (wet H2)473-673 (200°C-400°C)0.112Yang [38]
Li-CNT (dry H2)473-673 (200°C-400°C)0.12.5Yang [38]
K-CNT (wet H2)<313 K (40°C)0.121Yang [38]
K-CNT (dry H2)<313 K (40°C)0.11.8Yang [38]
Li-CNT473-673 K (200°C-400°C)0.10.72-4.2Pinkerton et al. [39]
Tab.2  Studies on carbon nanostructure for hydrogen storage []
Fig.5  Schematic figure of the working principle of LED []
Fig.6  Schematic picture of CNT-based ultra-capacitors []
Fig.7  A 65 million square feet of solar rooftops in California (picture courtesy of CNN)
Type of solar cellsMaterialsEfficiency (State of the art)/%
Wafer basedCrystalline Silicon25
Thin filmAmorphous SiliconCIGSCadmium telluride19
ElectrochemicalDye solar cells, Nanoporous Titanium dioxide10
ElectrochemicalFullerenes (C60) conjugated polymers5
Tab.3  Comparison of solar cell efficiency based on its material []
Fig.8  Scanning Electron Microscopy of nano-sized TiO having particle size of 10-300 nm for Gr?tzel cell application (picture courtesy of University of Washington)
Fig.9  Schematic figure of Gr?tzel cell layer []
1 Energy Information Administration (EIA). International energy outlook.2007-07, http://www.eia.doe.gov/oiaf/ieo/index.html
2 Suehiro S. Energy Intensity of GDP as an Index of Energy Conservation. Institute of Energy Economics Japan Report . 2007
3 Berger M. Nanotechnology applications could provide the required energy breakthroughs. 2012-06-05, http://www.nanowerk.com/spotlight/spotid=7424.php
4 Joachim C. To be nano or not to be nano? Nature Materials , 2005, 4(2): 107–109
doi: 10.1038/nmat1319 pmid:15689943
5 Yunus I S, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, iFirst, 2012, 1–13
6 Hartono. Prospek penelitian dan pengembangan teknologi ketenagalistrikan dan energi baru terbarukan berbasis nanoteknologi. Mineral Energy , 2010, 8(1): 10–16
7 Luther W. Application of Nano-Technologies in the Energy Sector. Germany: Hessian Ministry of Economy, Transport, Urban and Regional Development, 2008
8 Tatsumisago M. Solid-state lithium batteries using glass electrolytes. 2012-10, http://rm1.cc.lehigh.edu:8080/dept/IMI/pdf_DC07/Tatsumisago.pdf
9 Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Advanced Energy Materials , 2011, 1(6): 1079– 1084
doi: 10.1002/aenm.201100426
10 Bullis K. Higher-capacity lithium-ion batteries technology review. 2010-06-11, http://www.technologyreview.com/energy/17553/?a=f
11 Liang S, Zhu X, Lian P, Yang W, Wang H. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. Journal of Solid State Chemistry , 2011, 184(6): 1400–1404
doi: 10.1016/j.jssc.2011.03.052
12 Schroder K. Understanding the formation and composition of the solid-electrolyte interphase at silicon surfaces. 2012-10, http://webb.cm.utexas.edu/research/research_SEI.html
13 Nazri G A, Pistoia G. Lithium Batteries: Science and Technology. New York: Springer, 2003, 621–637
14 Rice B M. Jow T R. Energy?&?Energetics. U.S. Army Research Laboratory, 2012, 5
15 Smithsonian Institution. Fuel cell basics. 2011-11-24http://americanhistory.si.edu/fuelcells/basics.htm
16 Antolini E, Perez J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science , 2011, 46(13): 4435–4457
doi: 10.1007/s10853-011-5499-3
17 Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society , 2012, 134(5): 2492–2495
doi: 10.1021/ja2104334 pmid:22279956
18 Dai L, Chang D W, Baek J B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small , 2012, 8(8): 1130–1166
doi: 10.1002/smll.201101594 pmid:22383334
19 Chu K L, Gold S, Subramanian V, Lu C, Shannon M A, Masel R I. A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. Journal of Microelectromechanical Systems , 2006, 15(3): 671–677
doi: 10.1109/JMEMS.2006.872223
20 Bagotsky V S. Fuel Cells in Electrochemistry Encyclopedia. Yeager Center for Electrochemical Sciences (YCES) Report , 2009
21 Sun S, Jaouen F, Dodelet J P. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Advanced Materials (Deerfield Beach, Fla.) , 2008, 20(20): 3900–3904
doi: 10.1002/adma.200800491
22 Thomas S, Zalbowitz M. Fuel Cells—Green Power . New Mexico: Los Alamos National Laboratory, 2011
23 Bewag A. Energy moving into the future. The fuel cell: A technical report . 2012-10, http://www.fuelcellpark.com/projekt/down/Br_BZ_en.pdf
24 Wiberg E, Goeltzer H, Bauer R Z. Naturforsch. Teil B , 1951, 6: 394–395
25 Bogdanovi? B. Catalytic synthesis of organolithium and organomagnesium compounds and of lithium and magnesium hydrides—Applications in organic synthesis and hydrogen storage. Awandte Chemie International Edition in English , 1985, 24(4): 262–273
26 Zaluska A, Zaluski L, Str?m-Olsen J O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds , 1999, 288(1,2): 217–225
27 Ding R G, Lu G Q, Yan Z F, Wilson M A. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. Journal of Nanoscience and Nanotechnology , 2001, 1(1): 7–29
doi: 10.1166/jnn.2001.012 pmid:12914026
28 Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Advanced Materials , 2012, 24(33): 4473–4498
doi: 10.1002/adma.201201715 pmid:22806880
29 Guay P. Hydrogen storage. 2011-11-16, http://www.nanotechnologies.qc.ca/projects/hydrogen /hydrogen_storage # more-3
30 Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J. Storage of hydrogen in single-walled carbon nanotubes. Nature , 1997, 386(6623): 377–379
doi: 10.1038/386377a0
31 Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science , 1999, 285(5424): 91–93
doi: 10.1126/science.285.5424.91 pmid:10390369
32 Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. In: Proceedings of the 1999 US DOE Hydrogen Program Review II. Golden: National Renewable Energy Laboratory , 1999
33 Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science , 1999, 286(5442): 1127–1129
doi: 10.1126/science.286.5442.1127 pmid:10550044
34 Ye Y, Ahn C C, Witham C, Fultz B, Liu J, Rinzler A G, Colbert D, Smith K A, Smalley R E. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters , 1999, 74(16): 2307–2309
doi: 10.1063/1.123833
35 Wu X B, Chen P, Lin J, Tan K L. Hydrogen uptake by carbon nanotubes. International Journal of Hydrogen Energy , 2000, 25(3): 261–265
doi: 10.1016/S0360-3199(99)00037-3
36 Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 US DOE Hydrogen Program Review, II . Golden: National Renewable Energy Laboratory, 2000
37 Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg G S, Choi Y M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P. Hydrogen storage in sonicated carbon materials. Applied Physic A , 2001, 72(2): 129–132
doi: 10.1007/s003390100816
38 Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi Y M, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostrutures. Journal of Alloys and Compounds , 2002, 330–332: 654–658
doi: 10.1016/S0925-8388(01)01643-7
39 Yang R T. Hydrogen storage by alkali-doped carbon nanotubes revisited. Carbon , 2000, 38(4): 623–626
doi: 10.1016/S0008-6223(99)00273-0
40 Pinkerton F E, Wicke B G, Olk C H, Tibbetts G G, Meisner G P, Meyer M S, Herbst J F. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials. Journal of Physical Chemistry B , 2000, 104(40): 9460–9467
doi: 10.1021/jp000957o
41 Chambers A, Park C, Baker R T K, Rodriguez N M. Hydrogen storage in graphite nanofibers. Journal of Physical Chemistry B , 1998, 102(22): 4253–4256
doi: 10.1021/jp980114l
42 Haisen. LED working principle. 2011-11-18, http://www.hs-lighting.com/FAQ/7.html
43 Rusponi S, Kern K. Frontiers in Nanoscience. Chapter 14 . 2012-10-13, http://ipn2.epfl.ch/lns/lectures/nanoscience
44 Hiskey D. How an LED works. 2011-11-19, http://www.todayifoundout.com/index.php/2010/03/how-an-led-works
45 Bowers M J 2nd, McBride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals. Journal of the American Chemical Society , 2005, 127(44): 15378–15379
doi: 10.1021/ja055470d pmid:16262395
46 PlasmaChem GmbH. Quantenpunkten. “Echt” grunes und sonnenahnliches licht aus LEDs. Nanotechnologie Actuell , 2012-11-20, http://www.plasmachem.com/led-true-green_de.html
47 ScienceDaily. Nanotechnology being used in next-generation LED lights. 2011-11-20, http://www.sciencedaily.com/releases/2007/03/070319175617.htm
48 Auvray A, Pigeon S, Izquierdo R, Desjardins P, Martel R. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Applied Physics Letters , 2006, 88(18): 183104–183106
doi: 10.1063/1.2199461
49 Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W, Lu Z H. Unlocking the full potential of organic light emitting diodes on flexible plastic. Nature Photonics , 2011, 5(12): 753–757
doi: 10.1038/nphoton.2011.259
50 Levenstein S. OLED television wallpaper gives you a room with a view. 2012-10-13, http://inventorspot.com/articles/oled_television_wallpaper_gives_you_room_view_24270
51 Martens R. Samsung AMOLED. 2012-10-13, http://www.oled-info.com/samsung-oled
52 LEDs Magazine. Researchers develop all-white OLEDs, hybrid LEDs. 2012-10-13, http://ledsmagazine.com/news/6/6/21
53 Schindall J. The charge of the ultracapacitors. IEEE Spectrum , 2007, 44(11): 42–46
doi: 10.1109/MSPEC.2007.4378458
54 Stauffer N W. Saying goodbye to batteries. 2012-10-13, http://mitei.mit.edu/news/saying-goodbye-batteries
55 Institute of Science in Society (ISIS). Quantum dots and ultra-efficient solar cells? 2011-11-13, http://www.i-sis.org.uk/QDA UESC.php
56 Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science , 2011, 334(6062): 1530–1533
doi: 10.1126/science.1209845 pmid:22174246
57 Tiwari G N, Mishra R K. Advanced Renewable Energy Sources. Royal Society of Chemistry , 2011, 121
58 Green M A. Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. Progress in Photovoltaics: Research and Applications , 2006, 14(5): 383–392
doi: 10.1002/pip.702
59 Sánchez C V. Thin film nanocrystalline silicon solar cells obtained by hot-wire CVD. Dissertation for the Doctoral Degree. Universitat de Barcelona , 2001
60 Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications , 2011, 19(7): 894–897
doi: 10.1002/pip.1078
61 Gohary H E. Development of low-temperature epitaxial silicon films and application to solar cells. Dissertation for the Doctoral Degree. University of Waterloo , 2010
62 Sullivan P, Schumann S, Da Campo R, Howells T, Duraud A, Shipman M, Hatton R A, Jones T S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Advanced Energy Materials, online October 1 , 2012
63 Perez R, Perez M. A fundamental look at energy reserves for the planet. 2012-10-13, http://www.asrc.cestm.albany.edu/perez/Kit/pdf/a-fundamental-look-at%20the-planetary-energy-reserves.pdf
64 Chen F F. An Indispensable Truth: How Fusion Power Can Save the Planet. New York: Springer, 2011
65 Gr?tzel M. Photoelectrochemical cells. Nature , 2001, 414(6861): 338–344
doi: 10.1038/35104607 pmid:11713540
66 Gleue A D. How does the Gr?tzel Solar Cell work? 2012-06-05, http://teachers.usd497.org/agleue/Gratzel_solar_cell assets/How does a Gratzel Solar Cell work.htm
[1] Yanzhi Cai, Zhongyi Hu, Laifei Cheng, Siyu Guo, Tingting Liu, Shaohua Huang, Dengpeng Chen, Yuhan Wang, Haiming Yu, Yuan Zhou. Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions[J]. Front. Energy, 2024, 18(5): 612-639.
[2] Dengji ZHOU, Jiarui HAO, Wang XIAO, Chen WANG, Chongyuan SHUI, Xingyun JIA, Siyun YAN. Dynamic simulation of GEH-IES with distributed parameter characteristics for hydrogen-blending transportation[J]. Front. Energy, 2024, 18(4): 506-524.
[3] Zhiyuan WEI, Changying LIU, Xiaowen SUN, Yiduo LI, Haiyan LU. Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression[J]. Front. Energy, 2024, 18(4): 447-462.
[4] Chengrong YU, Zehua PAN, Hongying ZHANG, Bin CHEN, Wanbing GUAN, Bin MIAO, Siew Hwa CHAN, Zheng ZHONG, Yexin ZHOU. Numerical multi-physical optimization of operating condition and current collecting setup for large-area solid oxide fuel cells[J]. Front. Energy, 2024, 18(3): 356-368.
[5] Yongting ZHANG, Wanzhong LI, Hui GONG, Qianqian ZHANG, Liang YAN, Hao WANG. Recent progress in Prussian blue electrode for electrochromic devices[J]. Front. Energy, 2024, 18(2): 160-186.
[6] Zeyu WANG, Yanru LIU, Shun CHEN, Yun ZHENG, Xiaogang FU, Yan ZHANG, Wanglei WANG. Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction[J]. Front. Energy, 2024, 18(2): 241-262.
[7] Zhijing ZHANG, Haoze ZHANG, Yaopeng WU, Wei YAN, Jiujun ZHANG, Yun ZHENG, Lanting QIAN. Advances in doping strategies for sodium transition metal oxides cathodes: A review[J]. Front. Energy, 2024, 18(2): 141-159.
[8] Ziyuan TENG, Chao TAN, Peiyuan LIU, Minfang HAN. Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective[J]. Front. Energy, 2024, 18(1): 16-27.
[9] Can FANG, Xiangmei TANG, Jiaoyan WANG, Qingfeng YI. Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode[J]. Front. Energy, 2024, 18(1): 42-53.
[10] C. C. CHAN, Wei HAN, Hanlei TIAN, Yanbing LIU, Tianlu MA, C. Q. JIANG. Automotive revolution and carbon neutrality[J]. Front. Energy, 2023, 17(6): 693-703.
[11] Chen YANG, Xin-Yu MU. Mapping the trends and prospects of battery cathode materials based on patent landscape[J]. Front. Energy, 2023, 17(6): 822-832.
[12] Prabhakar YADAV, Kuldeep SAHAY, Malvika SRIVASTAVA, Arpit VERMA, Bal Chandra YADAV. Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap[J]. Front. Energy, 2023, 17(6): 727-750.
[13] Linsong GAN, Fei LIU, Xinhai YUAN, Lijun FU, Yuping WU. Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries[J]. Front. Energy, 2023, 17(6): 775-781.
[14] Zhang WEN, Liangzhong YAO, Fan CHENG, Jian XU, Beilin MAO, Rusi CHEN. A comprehensive review of wind power based power system frequency regulation[J]. Front. Energy, 2023, 17(5): 611-634.
[15] Yian LU, Suxin QIAN, Jun SHEN. A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys[J]. Front. Energy, 2023, 17(4): 504-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed