Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2013, Vol. 7 Issue (1) : 119-126    https://doi.org/10.1007/s11708-012-0226-6
RESEARCH ARTICLE
A combined experimental and theoretical study of micronized coal reburning
Hai ZHANG, Jiaxun LIU(), Jun SHEN, Xiumin JIANG
Institute of Thermal Energr Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(413 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Micronized coal reburning (MCR) can not only reduce carbon in fly ash but also reduce NOx emissions as compared to the conventional coal reburning. However, it has two major kinetic barriers in minimizing NOx emission. The first is the conversion of NO into hydrogen cyanide (HCN) by conjunction with various hydrocarbon fragments. The second is the oxidation of HCN by association with oxygen-containing groups. To elucidate the advantages of MCR, a combination of Diffuse Reflection Fourier Transform Infrared (FTIR) experimental studies with Density Functional Theory (DFT) theoretical calculations is conducted in terms of the second kinetic barrier.

FTIR studies based on Chinese Tiefa coal show that there are five hydroxide groups such as OH-π, OH-N, OH-OR2, self-associated OH and free OH. The hydroxide groups increase as the mean particle size decreases expect for free OH. DFT calculations at the B3LYP/6-31 G(d) level indicate that HCN can be oxidized by hydroxide groups in three paths, HCN+OH→HOCN+H (path 1), HCN+OH→HNCO+H (path 2), and HCN+OH→CN+H2O (path 3). The rate limiting steps for path 1, path 2 and path 3 are IM2→P1+H (170.66 kJ/mol activated energy), IM1→IM3 (231.04 kJ/mol activated energy), and R1+OH→P3+H2O (97.14 kJ/mol activated energy), respectively. The present study of MCR will provide insight into its lower NOx emission and guidance for further studies.

Keywords hydroxyl radicals      Fourier transform infrared spectroscopy (FTIR)      density functional theory (DFT)      homogeneous reaction mechanism      NOx     
Corresponding Author(s): LIU Jiaxun,Email:ljxpk01@163.com   
Issue Date: 05 March 2013
 Cite this article:   
Hai ZHANG,Jiaxun LIU,Jun SHEN, et al. A combined experimental and theoretical study of micronized coal reburning[J]. Front Energ, 2013, 7(1): 119-126.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0226-6
https://academic.hep.com.cn/fie/EN/Y2013/V7/I1/119
Fig.1  Schematic of the reburning system
Items/%Tiefa
Carbon (as air dried basis)55 69
Hydrogen (as air dried basis)3 88
Oxygen (as air dried basis)10 62
Nitrogen (as air dried basis)0 75
Sulfur (as air dried basis)0 59
Ash (as air dried basis)22 65
Moisture (as air dried basis)5 82
Volatile (as air dried basis)30 3
Fixed carbon (as air dried basis)41 23
Tab.1  Analysis of coal samples
Fig.2  (a) 400–2000 cmwave number; (b) 2000–4000 cmwave number
Types of OHWavenumber (cm-1) from Miura et alWavenumber (cm-1) in the present work
TF_6 82TF_10 21TF_15 55TF_25 10
OH-π35303527353035340
Self-associated OH34003390338933860
OH-OR232803229322632250
OH-N29403028302730213104
Free OH36403627362836333642
Tab.2  Various OH peak assignments in the present study and the study of Miura et al.
Fig.3  Curve-fitted FTIR spectrum of the hydroxide groups stretching bands for coal samples
(a) TF_6 82; (b) TF_10 21; (c) TF_15 55; (d) TF_25 10
Fig.4  Effect of coal particle size on hydroxide groups
Fig.5  Optimized geometries of all reactants intermediates transition states and products (Bond lengths are in angstroms and angles are in degrees)
Fig.6  Imaginary vibration model of each transition state
Fig.7  HCN oxidation mechanism
Fig.8  Energetic sketch of the stationary points for HCN oxidation
1 Smoot L D, Hill S C, Xu H. NOx control through reburning. Progress in Energy and Combustion Science , 1998, 24(5): 385-408
doi: 10.1016/S0360-1285(97)00022-1
2 Spliethoff H, Greul U, Rüdiger H, Hein K R G. Basic effects on NO emissions in air staging and reburning at a bench-scale test facility. Fuel , 1996, 75(5): 560-564
doi: 10.1016/0016-2361(95)00281-2
3 Zhong B J, Shi W W, Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals. Fuel Processing Technology , 2002, 79(2): 93-106
doi: 10.1016/S0378-3820(02)00102-9
4 Liu H, Hampartsoumian E, Gibbs B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning. Fuel , 1997, 76(11): 985-993
doi: 10.1016/S0016-2361(97)00114-2
5 Li S, Xu T M, Zhou Q L, Tan H Z, Hui S E, Hu H L. Optimization of coal reburning in a 1 MW tangentially fired furnace. Fuel, 2007, 86(7,8): 1169-1175
6 Luan T, Wang X D, Hao Y Z, Cheng L. Control of NO emission during coal reburning. Applied Energy , 2009, 86(9): 1783-1787
doi: 10.1016/j.apenergy.2008.12.027
7 Burch T E, Tillman F R, Chen W Y, Lester T W, Conway R B, Sterling A M. Partitioning of Nitrogenous species in the fuel-rich stage of reburning. Energy & Fuels , 1991, 5(2): 231-237
doi: 10.1021/ef00026a001
8 Burch T E, Chen W Y, Lester T W, Sterling A M. Interaction of fuel nitrogen with nitric oxide durning reburning with coal. Combustion and Flame , 1994, 98(4): 391-401
doi: 10.1016/0010-2180(94)90177-5
9 Chen W Y, Ma L. Effect of heterogeneous mechanisms during reburning of nitrogen oxide. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(7): 1968-1976
doi: 10.1002/aic.690420717
10 Smart J P, Morgan D J. The effectiveness of multi-fuel reburning in an internally fuel-staged burner for NOx reduction. Fuel , 1994, 73(9): 1437-1442
doi: 10.1016/0016-2361(94)90058-2
11 Maly P M, Zamansky V M, Ho L, Payne R. Alternative fuel reburning. Fuel , 1999, 78(3): 327-334
doi: 10.1016/S0016-2361(98)00161-6
12 Zhang C Q, Jiang X M, Wei L H, Wang H. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal. Energy Conversion and Management , 2007, 48(3): 797-802
doi: 10.1016/j.enconman.2006.09.003
13 Jiang X M, Zheng C G, Yan C, Liu D C, Qiu J R, Li J B. Physical structure and combustion properties of super fine pulverized coal particle. Fuel , 2002, 81(6): 793-797
doi: 10.1016/S0016-2361(01)00209-5
14 Jiang X M, Zheng C G, Qiu J R, Li J B, Liu D C. Combustion characteristics of super fine pulverized coal particles. Energy & Fuels , 2001, 15(5): 1100-1102
doi: 10.1021/ef000283g
15 Jiang X M, Huang X Y, Liu J X, Han X X. NOx Emission of fine- and superfine-pulverized coal combustion in O2/CO2 atmosphere. Energy & Fuels , 2010, 24(12): 6307-6313
doi: 10.1021/ef101029e
16 Maier H, Spliethoff H, Kicherer A, Fingerle A, Hein K R G. Effect of coal blending and particle size on NOx emission and burnout. Fuel , 1994, 73(9): 1447-1452
doi: 10.1016/0016-2361(94)90060-4
17 Chen C, Gao J S, Yan Y J. Observation of the type of hydrogen bonds in coal by FTIR. Energy & Fuels , 1998, 12(3): 446-449
doi: 10.1021/ef970100z
18 Li D T, Li W, Chen H K, Li B Q. The adjustment of hydrogen bonds and its effect on pyrolysis property of coal. Fuel Processing Technology , 2004, 85(8-10): 815-825
doi: 10.1016/j.fuproc.2003.11.028
19 Miura K, Mae K, Li W, Kusakawa T, Morozumi F, Kumano A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique. Energy & Fuels , 2001, 15(3): 599-610
doi: 10.1021/ef0001787
20 Sendt K, Haynes B S. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite. Combustion and Flame , 2005, 143(4): 629-643
doi: 10.1016/j.combustflame.2005.08.026
21 Sendt K, Haynes B S. Density functional study of the reaction of carbon surface oxides: The behavior of ketones. The Journal of Physical Chemistry A , 2005, 109(15): 3438-3447
doi: 10.1021/jp045111p pmid:16833681
22 Kyotani T, Tomita A. Analysis of the reaction of carbon with NO/N2O using Ab initio molecular orbital theory. Journal of Physical Chemistry B , 1999, 103(17): 3434-3441
doi: 10.1021/jp9845928
23 Zhu R S, Lin M C. The NCO+NO reaction revisited: Ab initio MO/VRRKM calculations for total rate constant and product branching ratios. Journal of Physical Chemistry A , 2000, 104(46): 10807-10811
doi: 10.1021/jp002637a
24 Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry (Weinheim an der Bergstrasse, Germany) , 2009, 15(16): 4195-4203
doi: 10.1002/chem.200802097 pmid:19248078
25 Becke A D. A new mixing of Hartree-Fock and local density functional theories. Journal of Chemical Physics , 1993, 98(2): 5648-5652
doi: 10.1063/1.464913
26 Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correction-energy formula into a functional of electron density. Physics Letters. Part B , 1988, 37: 785-789
27 Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of becke and Lee. Yang and Parr. Chemical Physics Letters , 1989, 157(3): 200-206
doi: 10.1016/0009-2614(89)87234-3
28 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian03 Revision D 01, Gaussian Inc: Wallingford CT , 2004
29 Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science , 1989, 15(4): 287-338
doi: 10.1016/0360-1285(89)90017-8
[1] Jeremy J. SCHREIFELS, Shuxiao WANG, Jiming HAO. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Front Energ, 2012, 6(1): 98-105.
[2] Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG. Effect of particle size on coal char----NO reaction[J]. Front Energ, 2011, 5(2): 221-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed