Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (2) : 221-228    https://doi.org/10.1007/s11708-011-0146-x
RESEARCH ARTICLE
Effect of particle size on coal char----NO reaction
Xiumin JIANG(), Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG
Institute of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai JiaoTong University, Shanghai 200240, China
 Download: PDF(200 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface nitrogen complex formation upon reaction of coal char with NO at 600°C was studied by X-ray photoelectron spectroscopy. Particle size had a noticeable effect on the magnitude of changes, which was observed on the surface of the coal char in the nitrogen functional group. The surface increased its -NO, pyridine-N-oxide, and -NO2 functional group contents with a decrease in particle size. The chemisorption processes of NO molecules on the char were simulated using the ab initio Hartree–Fock method and density functional theory. Molecular modeling was applied to determine the thermodynamics of the reactions. Mechanisms were proposed to explain the formation of the -NO, pyridine-N-oxide, and -NO2 functional groups at 600°C.

Keywords NO reduction      chemisorption      particle size      X-ray photoelectron spectroscopy      density functional theory (DFT)     
Corresponding Author(s): JIANG Xiumin,Email:xiuminjiang@sjtu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Xiumin JIANG,Xiangyong HUANG,Jiaxun LIU, et al. Effect of particle size on coal char----NO reaction[J]. Front Energ, 2011, 5(2): 221-228.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0146-x
https://academic.hep.com.cn/fie/EN/Y2011/V5/I2/221
Fig.1  Sketch of the experimental system
1-NO gas; 2-N2 gas; 3-Flow meter; 4-Gas mixed equipment; 5-Tubular electric furnace; 6-Gas analyzer; 7-Tubular quartz; 8-Bypass; 9-Temperature monitoring apparatus; 10-Gas pretreatment devic
Fig.2  Schematic representation of the most commonly found char surface nitrogen functional group
Fig.3  Curve-fitted XPS spectrum (coal char)
(a) 11.34 μm; (b) 18.95 μm; (c) 33.68 μm
Fig.4  Curve-fitted XPS spectrum (coal char after adsorption reaction at 600°C)
(a) 11.34 μm; (b) 18.95 μm; (c) 33.68 μm
Particle size (μm)Position (eV)Intensity countsWidth (eV)Peak areaAssignment
11.34398.92211.72405N-6
400.42771.69498N-5
401.72301.71419N-Q
18.95398.91551.58261N-6
400.42451.63425N-5
401.72561.74474N-Q
33.68398.91441.51231N-6
400.41891.53308N-5
401.71981.49314N-Q
Tab.1  Curve-fitting for nitrogen 1s spectra of coal char
Particle size (μm)Position (eV)Intensity countsWidth (eV)Peak areaAssignment
11.34398.91951.91396N-6
400.12201.71400-NO
400.42601.89523N-5
401.72301.75428N-Q
403.21751.52283N-X
406.12012.06441-NO2
18.95398.91601.69288N-6
400.11321.61226-NO
400.42431.59411N-5
401.72461.85484N-Q
403.21211.57164N-X
406.1681.97143-NO2
33.68398.91531.57256N-6
400.11101.47172-NO
400.42061.52333N-5
401.72041.58343N-Q
403.2771.8148N-X
406.1711.46110-NO2
Tab.2  Curve-fitting for the nitrogen 1s spectra of coal char after adsorption reaction at 600°C
Fig.5  Selected model for coal char
Fig.6  Modes of NO approach toward the char model
BondLength (pm)Atomic bond population
C (1)–C (5)1470.71
C (1)–C (2)1420.88
C (1)–C (3)1440.69
Tab.3  C–C bond length and bond angle for the char model
Fig.7  Structure of NO adsorption in the char model
ModelBondLength (pm)Atomic bond population
A1N–O1140.55
C (5)–N1260.69
C (1)–C (5)1410.31
C (1)–C (2)1380.88
C (1)–C (3)1430.69
C (5)–C (6)1400.37
A2N–O1310.24
C (5)–O1350.45
C (1)–C (5)1420.30
C (1)–C (2)1380.75
C (1)–C (3)1340.82
C (5)–C (6)1380.35
A3N–O1280.28
C (2)–O1370.44
C (5)–N1290.66
C (5)–C (6)1440.29
C (1)–C (5)1420.36
C (1)–C (2)1390.54
C (1)–C (3)1380.38
C (2)–C (4)1410.41
Tab.4  Bond length and bond angle for the A1–A3 model
Model?H/(kJ·mol-1)
A1-195
A2-15
A3-470
Tab.5  Adsorption heat of the A1–A3 model
Fig.8  -NOcomplex formation
Fig.9  Oxygen 1s spectra of coal char XPS
Fig.10  N-X complex formation
1 Dimitriou D J, Kandamby N, Lockwood F C. A mathematical modelling technique for gaseous and solid fuel reburning in pulverized coal combustors. Fuel , 2003, 82(15-17): 2107–2114
doi: 10.1016/S0016-2361(03)00184-4
2 Tree D R, Clark A W. Advanced reburning measurements of temperature and species in a pulverized coal flame. Fuel , 2000, 79(13): 1687–1695
doi: 10.1016/S0016-2361(00)00024-7
3 Hampartsoumian E, Folayan O O, Nimmo W, Gibbs B M. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type. Fuel , 2003, 82(4): 373–384
doi: 10.1016/S0016-2361(02)00311-3
4 Li Z Q, Yang L B, Qiu P H, Sun R, Chen L Z, Sun S Z. Experimental study of the combustion efficiency and formation of NOx in an industrial pulverized coal combustion. International Journal of Energy Research , 2004, 28(5): 511–520
5 Jiang X M, Zheng C G, Yan C, Liu D C, Qiu J R, Li J B. Physical structure and combustion properties of super fine pulverized coal particle. Fuel , 2002, 81(6): 793–797
doi: 10.1016/S0016-2361(01)00209-5
6 Matos M A A, Pereira F J, Ventura J M P. Kinetics of NO reduction by anthracite char in a fluidized bed reactor. Fuel , 1990, 69(11): 1435–1439
doi: 10.1016/0016-2361(90)90126-B
7 Chambrion P, Kyotani T, Tomita A. Role of N-containing surface species on NO reduction by carbon. Energy & Fuels , 1998, 12(2): 416–421
doi: 10.1021/ef970182r
8 Suzuki T, Kyotani T, Tomita A. Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial & Engineering Chemistry Research , 1994, 33(11): 2840–2845
doi: 10.1021/ie00035a038
9 Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon , 1995, 33(11): 1641–1653
doi: 10.1016/0008-6223(95)00154-6
10 Stanczyk K, Dziembaj R, Piwowarska Z, Witkowski S. Transformation of nitrogen structures in carbonization of model compounds. Carbon , 1995, 33(10): 1383–1392
doi: 10.1016/0008-6223(95)00084-Q
11 Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of nitrogen forms in Argonne premium coals. Energy & Fuels , 1994, 8(4): 896–906
doi: 10.1021/ef00046a013
12 Kozowski M. XPS study of reductively and non-reductively modified coals. Fuel , 2004, 83(3): 259–265
doi: 10.1016/j.fuel.2003.08.004
13 Domazetis G, Raoarun M, James B D, Liesegang J, Pigram P J, Brack N, Glaisher R. Analytical and characterization studies of organic and inorganic species in brown coal. Energy & Fuels , 2006, 20(4): 1556–1564
doi: 10.1021/ef0502251
14 Chen N, Yang R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon , 1998, 36(7, 8): 1061–1070
15 Zhu A H, Finnerty J, Lu G Q, Yang R T. Opposite roles of O2 in NO—, N2O—carbon reactions: an ab-initio study. Journal of Physical Chemistry B , 2001, 105(4): 821–830
doi: 10.1021/jp003036m
16 Montoya A, Mondragon F, Truong T N. First-principles kineticsof CO desorption from oxygen species on carbonaceous surface. Journal of Physical Chemistry A , 2002, 106(16): 4236–4239
doi: 10.1021/jp0144294
17 Jiang X M, Zheng C G, Qiu J R, Li J B, Liu D C. Combustion characteristics of super fine pulverized coal particle. Energy & Fuels , 2001, 15(5): 1100–1102
doi: 10.1021/ef000283g
18 Krishnaswamy S, Bhat S, Gunn R D, Agarwal P K. Low-temperature oxidation of coal: 1. A single-particle reaction-diffusion model. Fuel , 1996, 75(3): 333–343
doi: 10.1016/0016-2361(95)00180-8
[1] Wang LIU, Jiaqi ZHAI, Baiyang LIN, He LIN, Dong HAN. Soot size distribution in lightly sooting premixed flames of benzene and toluene[J]. Front. Energy, 2020, 14(1): 18-26.
[2] X. D. HUANG, X. F. GAN, Q. A. HUANG, J. Z. YANG. Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries[J]. Front. Energy, 2018, 12(2): 225-232.
[3] Hai ZHANG, Jiaxun LIU, Jun SHEN, Xiumin JIANG. A combined experimental and theoretical study of micronized coal reburning[J]. Front Energ, 2013, 7(1): 119-126.
[4] Shouxuan QIN, Xiaoshu CAI, Li MA. A novel light fluctuation spectrum method for in-line particle sizing[J]. Front Energ, 2012, 6(1): 89-97.
[5] Xiangsong HOU, Shi YANG, Junfu LU, Hai ZHANG, Guangxi YUE. Effect of circulating ash from CFB boilers on NO and N2O emission[J]. Front Energ Power Eng Chin, 2009, 3(2): 241-246.
[6] LIU Xiaowei, XU Minghou, YU Dunxi, GAO Xiangpeng, CAO Qian, HAO Wei. Influence of mineral transformation on emission of particulate matters during coal combustion[J]. Front. Energy, 2007, 1(2): 213-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed