Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (4) : 433-445    https://doi.org/10.1007/s11708-015-0383-5
RESEARCH ARTICLE
Prediction of selected biodiesel fuel properties using artificial neural network
Solomon O. GIWA(),Sunday O. ADEKOMAYA,Kayode O. ADAMA,Moruf O. MUKAILA
Department of Agricultural and Mechanical Engineering, College of Engineering and Environmental Studies, Olabisi Onabanjo University, Ibogun Campus, Ifo, Ogun State, Nigeria
 Download: PDF(840 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biodiesel is an alternative fuel to replace fossil-based diesel fuel. It has fuel properties similar to diesel which are generally determined experimentally. The experimental determination of various properties of biodiesel is costly, time consuming and a tedious process. To solve these problems, artificial neural network (ANN) has been considered as a vital tool for estimating the fuel properties of biodiesel, especially from its fatty acid (FA) composition. In this study, four ANNs have been designed and trained to predict the cetane number (CN), flash point (FP), kinematic viscosity (KV) and density of biodiesel using ANN with logsig and purelin transfer functions in the hidden layer of all the networks. The five most prevalent FAs from 55 feedstocks found in the literature utilized as the input parameters for the model are palmitic, stearic, oleic, linoleic and linolenic acids except for density network with a sixth parameter (temperature). Other FAs that are present in the biodiesels have been considered based on the number of carbon atom chains and the level of saturation. From this study, the prediction accuracy and the average absolute deviation of the networks are CN (96.69%; 1.637%), KV (95.80%; 1.638%), FP (99.07%; 0.997%) and density (99.40%; 0.101%). These values are reasonably better compared to previous studies on empirical correlations and ANN predictions of these fuel properties found in literature. Hence, the present study demonstrates the ability of ANN model to predict fuel properties of biodiesel with high accuracy.

Keywords biodiesel      fuel properties      artificial neural network      fatty acid      prediction     
Corresponding Author(s): Solomon O. GIWA   
Just Accepted Date: 11 September 2015   Online First Date: 26 October 2015    Issue Date: 04 November 2015
 Cite this article:   
Solomon O. GIWA,Sunday O. ADEKOMAYA,Kayode O. ADAMA, et al. Prediction of selected biodiesel fuel properties using artificial neural network[J]. Front. Energy, 2015, 9(4): 433-445.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0383-5
https://academic.hep.com.cn/fie/EN/Y2015/V9/I4/433
Fig.1  Architecture of ANN (5:2:4)
Fig.2  Regression plots for CN network

(a) Training; (b) validation; (c) testing; (d) performance

S/N CN KV
Actual Predicted error Error %Error Actual Predicted error Error %Error
1 53.0 54.178 −1.178 −2.223 4.60 4.489 0.111 2.415
2 61.0 60.550 0.449 0.737 4.50 4.343 0.157 3.482
3 62.4 59.374 3.026 4.849 4.502 4.509 −0.008 −0.177
4 58.3 58.610 −0.310 −0.532 4.415 4.427 −0.013 −0.287
5 55.6 53.403 2.197 3.952 4.10 4.097 0.003 0.075
6 50.0 49.741 0.259 0.518 4.20 4.243 −0.043 −1.030
7 53.0 53.061 −0.065 −0.123 4.40 4.438 −0.038 −0.864
8 55.0 52.937 2.068 3.751 4.40 4.607 −0.207 −4.709
9 51.1 50.527 0.573 1.121 4.20 4.324 −0.124 −2.941
10 57.1 56.303 0.797 1.395 4.40 4.399 0.0007 0.015
11 59.0 58.968 0.032 0.055 4.867 4.738 0.129 2.659
12 57.0 56.469 0.531 0.932 4.50 4.407 0.093 2.065
13 48.0 49.395 −1.395 −2.907 4.10 4.224 −0.124 −3.031
14 57.0 56.231 0.769 1.349 4.20 4.330 −0.130 −3.105
15 53.0 53.041 −0.041 −0.078 4.40 4.319 0.081 1.833
16 52.2 52.693 −0.493 −0.945 4.01 4.111 −0.101 −2.524
17 55.1 55.261 −0.161 −0.292 4.16 4.269 −0.109 −2.629
18 57.0 55.495 1.505 2.641 4.30 4.177 0.123 2.868
19 55.1 55.393 −0.293 −0.531 4.16 4.292 −0.132 −3.176
20 54.13 53.791 0.339 0.626 4.07 4.025 0.045 1.103
21 51.3 51.268 0.032 0.063 4.30 4.243 0.036 1.326
22 60.0 60.398 −0.398 −0.663 3.75 3.667 0.083 2.207
23 63.3 59.108 4.692 7.354 4.50 4.459 0.040 0.891
24 45.0 44.651 0.349 0.775 5.00 4.974 0.026 0.526
25 58.8 61.502 −2.702 −4.596 5.00 4.971 0.029 0.589
26 55.0 53.271 1.729 3.144 4.83 4.811 0.019 0.384
27 52.3 52.506 −0.186 −0.356 4.46 4.454 0.006 0.139
28 55.1 55.393 −0.292 −0.531 4.54 4.536 0.004 0.082
29 52.8 52.747 0.052 0.100 4.70 4.686 0.014 0.298
30 57.2 57.411 −0.211 −0.368 4.00 3.921 0.079 1.981
31 51.0 52.421 −1.452 −2.847 4.40 4.499 −0.099 −2.267
32 62.6 62.150 0.449 0.718 4.79 4.684 0.106 2.211
33 55.0 57.566 −2.566 −4.666 3.99 3.938 0.052 1.313
34 55.0 54.342 0.658 1.196 4.37 4.382 −0.012 −0.273
35 62.0 61.397 0.603 0.973 4.12 4.172 −0.052 −1.254
36 74.3 71.566 2.734 3.680 4.41 4.582 −0.172 −3.897
37 75.6 73.455 2.145 2.837 4.29 4.233 0.056 1.313
38 57.2 56.913 0.287 0.502 4.16 4.292 −0.132 −3.174
39 42.0 41.859 0.140 0.334 4.15 4.291 −0.141 −3.400
40 22.9 22.850 0.050 0.218 4.42 4.396 0.024 0.549
41 4.39 4.377 0.013 0.293
42 4.30 4.222 0.078 1.820
43 2.78 2.783 −0.006 −0.201
44 2.99 3.059 −0.074 −2.467
45 4.52 4.679 −0.162 −3.579
46 3.75 3.735 0.010 0.274
Tab.1  Actual and predicted CN and KV of biodiesels
Fig.3  Regression plots for KV network

(a) Training; (b) validation; (c) testing; (d) performance

Fig.4  Regression plots of FP network

(a) Training; (b) validation; (c) testing; (d) performance

S/N FP Density
Actual Predicted Error %Error Actual Predicted Error %Error
1 176 177.52 −1.518 −0.862 870 869.99 0.007 0.0008
2 176 174.47 1.533 0.871 883 884.98 −1.976 −0.2238
3 174 178.12 −4.122 −2.369 888.9 889.52 −0.618 −0.0695
4 182 177.59 4.415 2.426 886.8 886.35 0.451 0.0509
5 180 180.93 −0.925 −0.514 883 884.17 −1.172 −0.1327
6 177 178.03 −1.026 −0.580 885 881.91 3.088 0.3489
7 174 173.46 0.5452 0.313 875 872.77 2.230 0.2549
8 170 171.23 −1.230 −0.723 880 879.87 0.128 0.0145
9 171 171.24 −0.243 −0.142 860 859.84 0.161 0.0187
10 166 161.57 4.430 2.669 877 877.03 −0.032 −0.0037
11 175 175.29 −0.288 −0.165 888.8 886.25 2.546 0.2865
12 172 171.90 0.099 0.058 873 872.75 0.248 0.0284
13 178 172.35 5.649 3.173 885 885.14 −0.143 −0.0162
14 170 171.36 −1.355 −0.797 882 878.46 3.539 0.4013
15 156 157.29 −1.290 −0.827 873 873.02 −0.017 −0.0019
16 157 157.25 −0.252 −0.160 885 884.98 0.018 0.0020
17 141 144.40 −3.401 −2.412 880 884.32 −4.322 −0.4911
18 150 150.10 −0.100 −0.067 875 876.68 −1.680 −0.1920
19 169 166.67 2.332 1.380 884 884.63 −0.629 −0.0711
20 178 175.56 2.436 1.368 880.1 883.60 −3.502 −0.3979
21 170 169.19 0.814 0.479 876 874.95 1.054 0.1203
22 163 162.92 0.080 0.049
23 189 187.30 1.701 0.900
24 150 149.80 0.199 0.133
25 141 141.06 −0.057 −0.041
26 174 179.91 −5.909 −3.394
27 176 173.17 2.834 1.610
28 140 140.64 −0.641 −0.458
29 163 163.13 −0.128 −0.078
30 165 165.28 −0.275 −0.167
31 174 177.02 −3.018 −1.735
Tab.2  Actual and predicted FP and density of biodiesels
Fig.5  Regression plots of density network

(a) Training; (b) validation; (c) testing; (d) performance

Parameter Previous studies This study
Ref. [15] Ref. [60] AAD/% MAE
CN 5.95 5.66−12.34 1.637 0.955
KV 2.57 2.57−8.04 1.689 0.0717 mm2/s
FP 1.81 0.997 1.705°C
Density 0.11 N/A 0.101 1.312 kg/m3
Tab.3  Previous studies versus present study
1 Achten  W M J, Verchot  L, Franken  Y J, Mathijs  E, Singh  V P, Aerts  R, Muys  B. Jatropha bio-diesel production and use. Biomass and Bioenergy, 2008, 32(12): 1063–1084
https://doi.org/10.1016/j.biombioe.2008.03.003
2 El Diwani  G, Attia  N K, Hawash  S I. Development and evaluation of biodiesel fuel and by-products from Jatropha oil. International Journal of Environmental Science and Technology, 2009, 6(2): 219–224
https://doi.org/10.1007/BF03327625
3 Balat  M, Balat  H. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 2009, 86(11): 2273–2282
https://doi.org/10.1016/j.apenergy.2009.03.015
4 Kondamudi  N, Strull  J, Misra  M, Mohapatra  S K. A green process for producing biodiesel from feather meal. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6163–6166
https://doi.org/10.1021/jf900140e
5 Mariod  A, Klupsch  S, Hussein  I H, Ondruschka  B. Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energy & Fuels, 2006, 20(5): 2249–2252
https://doi.org/10.1021/ef060039a
6 Lin  C Y, Fan  C L. Fuel properties of biodiesel produced from Camellia Oleifera Abel oil through supercritical-methanol transesterification. Fuel, 2011, 90(6): 2240–2244
https://doi.org/10.1016/j.fuel.2011.02.020
7 Alptekin  E, Canakci  M. Determination of the density and the viscosities of biodiesel−diesel fuel blends. Renewable Energy, 2008, 33(12): 2623–2630
https://doi.org/10.1016/j.renene.2008.02.020
8 Lin  C, Li  R. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish. Fuel Processing Technology, 2009, 90(1): 130–136
https://doi.org/10.1016/j.fuproc.2008.08.002
9 Giwa  S, Layeni  A, Ogunbona  C. Synthesis and characterization of biodiesel from industrial starch production byproduct. Energy and Environmental Engineering Journal, 2012, 1(1): 45–51
10 Knothe  G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 2005, 86(10): 1059–1070
https://doi.org/10.1016/j.fuproc.2004.11.002
11 Ramos  M J, Fernández  C M, Casas  A, Rodríguez  L, Pérez  A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 2009, 100(1): 261–268
https://doi.org/10.1016/j.biortech.2008.06.039
12 Cheenkachorn  K. Predicting properties of biodiesel using statistical models and artificial neural networks. In: Proceedings of the Joint International Conference on Sustainable Energy and Environment. Hua Hin, Thailand, 2004, 176–179
13 Allen  C A W, Watts  K C, Ackman  R G, Pegg  M J. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 1999, 78(11): 1319–1326
https://doi.org/10.1016/S0016-2361(99)00059-9
14 Ramírez-Verduzco  L F, Rodríguez-Rodríguez  J E, Jaramillo-Jacob  A R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 2012, 91(1): 102–111
https://doi.org/10.1016/j.fuel.2011.06.070
15 Krisnangkura  K, Yimsuwan  T, Pairintra  R. An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel, 2006, 85(1): 107–113
https://doi.org/10.1016/j.fuel.2005.05.010
16 Krisnangkura  K, Sansa-ard  C, Aryusuk  K, Lilitchan  S, Kittiratanapiboon  K. An empirical approach for predicting kinematic viscosities of biodiesel blends. Fuel, 2010, 89(10): 2775–2780
https://doi.org/10.1016/j.fuel.2010.04.033
17 Piloto-Rodríguez  R, Sánchez-Borroto  Y, Lapuerta  M, Goyos-Pérez  L, Verhelst  S. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 2013, 65: 255–261
https://doi.org/10.1016/j.enconman.2012.07.023
18 Bamgboye  A I, Hansen  A C. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 2008, 22: 21–29
19 Gopinath  A, Puhan  S, Nagarajan  G. Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renewable Energy, 2009, 34(7): 1806–1811
https://doi.org/10.1016/j.renene.2008.11.023
20 Shivakumar,  Srinivas  P P, Shrinivasa  R B R, Samaga  B S. Performance and emission characteristics of a 4 stroke C.I engine operated on honge methyl ester using artificial neural network. ARPN Journal of Engineering and Applied Sciences, 2010, 5(6): 83–94
21 Ramadhas  A S, Jayaraj  S, Muraleedharan  C, Padmakumari  K. Artificial neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy, 2006, 31(15): 2524–2533
https://doi.org/10.1016/j.renene.2006.01.009
22 Baroutian  S, Kheireddine Aroua  M, Abdul Raman  A A, Nik Sulaiman  N M. Estimation of vegetable oil-based ethyl esters biodiesel densities using artificial neural networks. Journal of Applied Sciences, 2008, 8(17): 3005–3011
https://doi.org/10.3923/jas.2008.3005.3011
23 Meng  X, Jia  M, Wang  T. Neural network prediction of biodiesel kinematic viscosity at 313 K. Fuel, 2014, 121: 133–140
https://doi.org/10.1016/j.fuel.2013.12.029
24 Balabin  R M, Lomakina  E I, Safieva  R Z. Neural network approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water content using near infrared (NIR) spectroscopy. Fuel, 2011, 90(5): 2007–2015
https://doi.org/10.1016/j.fuel.2010.11.038
25 Singh  S P, Singh  D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable & Sustainable Energy Reviews, 2009, 14(1): 200–216
https://doi.org/10.1016/j.rser.2009.07.017
26 Rashid  U, Anwar  F, Moser  B R, Ashraf  S. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 2008, 32(12): 1202–1205
https://doi.org/10.1016/j.biombioe.2008.03.001
27 Sarin  R, Sharma  M, Sinharay  S, Malhotra  R K. Jatropha−Palm biodiesel blends: an optimum mix for Asia. Fuel, 2007, 86(10−11): 1365–1371
https://doi.org/10.1016/j.fuel.2006.11.040
28 Canakci  M, Sanli  H. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 431–441
https://doi.org/10.1007/s10295-008-0337-6
29 Martín  R S, Cerda  T D L, Uribe  A, Basilio  P, Jordán  M, Prehn  D, Gebauer  M. Evaluation of guindilla oil (Guindilla trinervis Gillies ex Hook. et Arn.) for biodiesel Production. Fuel, 2010, 89(12): 3785–3790
https://doi.org/10.1016/j.fuel.2010.07.017
30 Anwar  F, Rashid  U, Ashraf  M, Nadeem  M. Okra (Hibiscus esculentus) seed oil for biodiesel production. Applied Energy, 2010, 87(3): 779–785
https://doi.org/10.1016/j.apenergy.2009.09.020
31 Nabi  M N, Hogue  S M N, Akhter  M S. Karanja (Pongamia Pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Processing Technology, 2009, 90(9): 1080–1086
https://doi.org/10.1016/j.fuproc.2009.04.014
32 Leung  D Y C, Wu  X, Leung  M K H. A review on biodiesel production using catalyzed transesterification. Applied Energy, 2010, 87(4): 1083–1095
https://doi.org/10.1016/j.apenergy.2009.10.006
33 Sivakumar  P, Anbarasu  K, Renganathan  S. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum. Fuel, 2011, 90(1): 147–151
https://doi.org/10.1016/j.fuel.2010.08.024
34 Öner  C, Altun  S. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Applied Energy, 2009, 86(10): 2114–2120
https://doi.org/10.1016/j.apenergy.2009.01.005
35 Keskin  A, Guru  M, Altıparmak  D. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresource Technology, 2008, 99(14): 6434–6438
https://doi.org/10.1016/j.biortech.2007.11.051
36 Dorado  M P, Ballesteros  E, Lo’pez  F J, Mittelbach  M. Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy & Fuels, 2004, 18(1): 77–83
https://doi.org/10.1021/ef0340110
37 Aliyu  B, Agnew  B, Douglas  S. Croton megalocarpus (musine) seeds used as a potential source of biodiesel. Biomass and Bioenergy, 2010, 34(10): 1495–1499
https://doi.org/10.1016/j.biombioe.2010.04.026
38 Enweremadu  C C, Mbarawa  M M. Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2205–2224
https://doi.org/10.1016/j.rser.2009.06.007
39 Yang  F X, Su  Y Q, Li  X H, Zhang  Q, Sun  R C. Studies on the preparation of biodiesel from Zanthoxylum bungeanum maxim seed oil. Journal of Agricultural and Food Chemistry, 2008, 56(17): 7891–7896
https://doi.org/10.1021/jf801364f
40 Zhang  S, Zu  Y G, Fu  Y J, Luo  M, Zhang  D Y, Efferth  T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource Technology, 2010, 101(3): 931–936
https://doi.org/10.1016/j.biortech.2009.08.069
41 Sahoo  P K, Das  L M. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oil. Fuel, 2009, 88(9): 1588–1594
https://doi.org/10.1016/j.fuel.2009.02.016
42 Yang  F X, Su  Y Q, Li  X H, Zhang  Q, Sun  R C. Preparation of biodiesel from Idesia polycarpa var. Vestita fruit oil. Industrial Crops and Products, 2009, 29(2−3): 622–628
https://doi.org/10.1016/j.indcrop.2008.12.004
43 Schinas  P, Karavalakis  G, Davaris  C, Anastopoulos  G, Karonis  D, Zannikos  F, Stournas  S, Lois  E. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass and Bioenergy, 2009, 33(1): 44–49
https://doi.org/10.1016/j.biombioe.2008.04.008
44 Moser  B R. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology−Plant, 2009, 45(3): 229–266
https://doi.org/10.1007/s11627-009-9204-z
45 Moser  B R, Vaughn  S F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 2010, 101(2): 646–653
https://doi.org/10.1016/j.biortech.2009.08.054
46 Rashid  U, Anwar  F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels, 2008, 22(2): 1306–1312
https://doi.org/10.1021/ef700548s
47 Santos  I C F, Carvalho  S H V, Solleti  J I, Salles  W F D L, Salles  K T D S D L, Meneghetti  S M P. Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresource Technology, 2008, 99(14): 6545–6549
https://doi.org/10.1016/j.biortech.2007.11.048
48 Joshi  H, Moser  B R, Toler  J, Smith  W F, Walker  T. Effects of blending alcohols with poultry fat methyl esters on cold flow properties. Renewable Energy, 2010, 35(10): 2207–2210
https://doi.org/10.1016/j.renene.2010.02.029
49 Candeia  R A, Silva  M C D, Carvalho-Filho  J R, Brasilino  M G A, Bicudo  T C, Santos  I M G, Souza  A G. Influence of soybean biodiesel content on basic properties of biodiesel−diesel blends. Fuel, 2009, 88(4): 738–743
https://doi.org/10.1016/j.fuel.2008.10.015
50 Sarin  R, Sharma  M, Khan  A A. Studies on Guizotia abyssinica L. oil: biodiesel synthesis and process optimization. Bioresource Technology, 2009, 100(18): 4187–4192
https://doi.org/10.1016/j.biortech.2009.03.072
51 Chakrabarti  M H, Ahmad  R. Investigating possibility of using least desirable edible oil of eruca sativa L. in biodiesel production. Pakistan Journal of Botany, 2009, 41: 481–487
52 Kafuku  K, Mbarawa  M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 2010, 89(9): 2556–2560
https://doi.org/10.1016/j.fuel.2010.03.039
53 Sharma  Y C, Singh  B. An idea feedstocks, kusum (Schleichera Triguga) for preparation of biodiesel: optimization of parameters. Fuel, 2010, 89(7): 1470–1474
https://doi.org/10.1016/j.fuel.2009.10.013
54 da Silva  J P V, Serra  T M, Gossmann  M, Wolf  C R, Meneghetti  M R, Meneghetti  S M P. Moringa oleifera oil studies of characterization and biodiesel Production. Biomass and Bioenergy, 2010, 34(10): 1527–1530
https://doi.org/10.1016/j.biombioe.2010.04.002
55 Usta  N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass and Bioenergy, 2005, 28(1): 77–86
https://doi.org/10.1016/j.biombioe.2004.06.004
56 Santos  N A, Tavares  M L A, Rosenhaim  R, Silva  F C, Fernandes  V J Jr, Santos   I M G, Souza  A G. Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 649–652
https://doi.org/10.1007/s10973-006-7765-1
57 Tiwari  A K, Kumar  A, Raheman  H. Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass and Bioenergy, 2007, 31(8): 569–575
https://doi.org/10.1016/j.biombioe.2007.03.003
58 Sinha  S, Agarwal  A K, Garg  S. Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Conversion and Management, 2008, 49(5): 1248–1257
https://doi.org/10.1016/j.enconman.2007.08.010
59 Nakpong  P, Wootthikanokkhan  S. Roselle (Hibiscus sabdariffa L.) oil as an alternative feedstock for biodiesel production in Thailand. Fuel, 2010, 89(8): 1806–1811
https://doi.org/10.1016/j.fuel.2009.11.040
60 Saxena  P, Jawale  S, Joshipura  M H. A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Engineering, 2013, 51: 395–402
https://doi.org/10.1016/j.proeng.2013.01.055
61 Najafi  G, Ghobadian  B, Yusaf  T F, Rahimi  H. Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid. American Journal of Applied Sciences, 2007, 4(10): 756–764
[1] FEP-15028-OF-GSO_suppl_1 Download
[1] Rashmi P. SHETTY, A. SATHYABHAMA, P. Srinivasa PAI. Comparison of modeling methods for wind power prediction: a critical study[J]. Front. Energy, 2020, 14(2): 347-358.
[2] Seiya MAKI, Shuichi ASHINA, Minoru FUJII, Tsuyoshi FUJITA, Norio YABE, Kenji UCHIDA, Gito GINTING, Rizaldi BOER, Remi CHANDRAN. Employing electricity-consumption monitoring systems and integrative time-series analysis models: A case study in Bogor, Indonesia[J]. Front. Energy, 2018, 12(3): 426-439.
[3] Junbao JIA,Jincheng XING,Jihong LING,Ren PENG. A method to predict cooling load of large commercial buildings based on weather forecast and internal occupancy[J]. Front. Energy, 2016, 10(4): 459-465.
[4] Jinyuan SHI,Yong WANG. Reliability prediction and its validation for nuclear power units in service[J]. Front. Energy, 2016, 10(4): 479-488.
[5] Solomon GIWA,Oludaisi ADEKOMAYA,Collins NWAOKOCHA. Potential hybrid feedstock for biodiesel production in the tropics[J]. Front. Energy, 2016, 10(3): 329-336.
[6] Arunachalam VELMURUGAN,Marimuthu LOGANATHAN,E. James GUNASEKARAN. Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network[J]. Front. Energy, 2016, 10(1): 114-124.
[7] S. Surender REDDY,Chan-Mook JUNG,Ko Jun SEOG. Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique[J]. Front. Energy, 2016, 10(1): 105-113.
[8] Nurul Atiqah Izzati MD ISHAK,Ismail Ab RAMAN,Mohd Ambar YARMO,Wan Mohd Faizal WAN MAHMOOD. Ternary phase behavior of water microemulsified diesel-palm biodiesel[J]. Front. Energy, 2015, 9(2): 162-169.
[9] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[10] Simarjit KAUR, Yajvender Pal VERMA, Sunil AGRAWAL. Optimal generation scheduling in power system using frequency prediction through ANN under ABT environment[J]. Front Energ, 2013, 7(4): 468-478.
[11] Moulay Rachid DOUIRI, Mohamed CHERKAOUI. Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives[J]. Front Energ, 2013, 7(4): 456-467.
[12] Srinivasan CHANDRASEKARAN, Arunachalam AMARKARTHIK, Karuppan SIVAKUMAR, Dhanasekaran SELVAMUTHUKUMARAN, Shaji SIDNEY. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion[J]. Front Energ, 2013, 7(3): 279-287.
[13] Cunwen WANG, Lu CHEN, Bajpai RAKESH, Yuanhang QIN, Renliang LV. Technologies for extracting lipids from oleaginous microorganisms for biodiesel production[J]. Front Energ, 2012, 6(3): 266-274.
[14] Wu YU, Gen CHEN, Zuohua HUANG. Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend[J]. Front Energ, 2011, 5(4): 412-418.
[15] Zhengjiao TANG, Cunwen WANG, Weiguo WANG, Jia GUO, Yuanxin WU, Jinfang CHEN, Yigang DING. Simulation analysis of methanol flash distillation circulation process in biodiesel production with supercritical method[J]. Front Energ, 2011, 5(1): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed