Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 5-21    https://doi.org/10.1007/s11708-017-0517-z
REVIEW ARTICLE
Near-field radiative thermoelectric energy converters: a review
Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG()
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 Download: PDF(543 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

Keywords energy conversion systems      luminescent refrigeration      near-field radiation      thermophotovoltaic      thermoradiative cell     
Corresponding Author(s): Zhuomin ZHANG   
Just Accepted Date: 30 October 2017   Online First Date: 05 December 2017    Issue Date: 08 March 2018
 Cite this article:   
Eric TERVO,Elham BAGHERISERESHKI,Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0517-z
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/5
Fig.1  Schematics of the four types of radiative thermoelectric energy converters (RTECs)
Fig.2  Schematic of photon tunneling enabling high near-field radiation heat transfer between a hot and cold object. Upon total internal reflection of a propagating electromagnetic wave in medium 1, an exponentially decaying field exists in medium 2. If a third material is brought within micro- or nano-scale distances d from the first material, coupling of the evanescent waves between these objects enables photon tunneling across the gap. The Poynting vector in the gap then has a nonzero normal component, indicating energy transfer between the hot and cold object
Fig.3  (a) Spectral intensity and (b) apparent temperature for a semiconductor with a bandgap energy of Eg= 0.2 eV at a temperature of 300 K under varying chemical potential m. Above the bandgap a positive chemical potential, which corresponds to a forward bias of a p-n junction, is associated with greater photon emission, and the semiconductor therefore appears “hotter” in this spectral region. A negative chemical potential, corresponding to a reverse bias of a p-n junction, reduces photon emission and makes the material appear “colder.”
Fig.4  Entropy content of thermal radiation (solid lines) compared to that of conduction (horizontal dashed line). Blackbody radiation has a higher entropy content than conduction, as evidenced by the higher values over the whole photon energy spectrum. Low-frequency radiation, however, has much higher entropy content than high frequency radiation. This can also be modified by introducing a chemical potential, which can lower the entropy content below that of conduction if m>0
Fig.5  Band diagrams for radiative thermoelectric energy converters (RTECs) including (a) thermophotovoltaic (TPV) cell, (b) thermoradiative (TR) cell, (c) electroluminescent (EL) refrigerator, and (d) negative electroluminescent (NEL) refrigerator. For each device, the split between the electron and hole quasi-Fermi levels Ef,eEf,h corresponds to the bias voltage multiplied by the charge of an electron, qV. Electron-hole pairs are generated (destroyed) by net photon absorption (emission) with energy ω above the bandgap for TPV and NEL (TR and EL) devices. The corresponding electron and hole flows are shown along the valence and conduction bands Ev and Ec
Fig.6  Plot of current density (J) versus bias voltage (V) for each radiative thermoelectric energy converter. The case of thermal equilibrium is shown by the black curve through the origin. If the diode is exposed to a warmer environment and receives net radiation, the curve shifts down and may operate as a thermophotovoltaic device. Applying a high enough voltage in this condition changes the direction of net thermal radiation to operate as an electroluminescent refrigerator. If the diode is exposed to a colder environment and emits net radiation, the curve shifts up and may operate as a thermoradiative device. Similarly, applying sufficient voltage will change the radiative heat flow direction and become a negative electroluminescent refrigerator
Fig.7  (a) Interplay of loss mechanisms in TPV devices and (b) effect of different loss types on near-field power enhancement over the far-field value PFF for broadband Tungsten and narrowband optimized Drude emitters. The combination of radiative, electrical, and thermal losses can significantly degrade performance, and these also include feedback mechanisms that further reduce power output. In (b), the TPV cell is cooled by convection with the free-stream temperature and convection coefficient shown in the graph, and it is modeled with a surface recombination velocity Se as indicated. The Drude emitter only outperforms the Tungsten emitter at very small gap distances when electrical and thermal losses are not considered. (Reprinted figure from Bernardi et al. [72], under Creative Commons CC-BY license.)
Fig.8  Thermoradiative device tradeoff between efficiency and power density for a thin-film InSb cell at 500 K emitting to an environment at 300 K. The black dash-dot line indicates far-field radiation between the InSb cell and a blackbody environment. The solid red line shows the far-field performance when the environment is replaced by a fictitious narrowband selective emitter/absorber for low frequencies just above the bandgap. The blue dashed line is for near-field operation with a gap distance of 100 nm and a CaCO3 receiver, and the blue dotted line plotted on the right y-axis is for near-field operation with a gap distance of 10 nm and a CaCO3 receiver. In the far-field, use of a selective receiver increases efficiency due to the higher entropy content of low-frequency photons, but it decreases power density due to reduced total radiation exchange. Operating the device in the near-field regime and choosing a receiver that couples to the cell with surface phonon polariton modes increase the power density substantially while maintaining high efficiencies. (Reprinted figure from Hsu et al. [87], under Creative Commons CC-BY license.)
Fig.9  An electroluminescent refrigerator (a) schematic and (b) maximum refrigeration rate considering Auger recombination and sub-bandgap radiative losses. The p-i-n junction device is GaSb with Ag contacts, and the hotter receiver is Ge mounted on an Ag substrate. The maximum refrigeration rate is obtained by optimizing the operating voltage. At large gap spacing d, the refrigeration rate is a constant at its far-field value where only propagating modes participate in the radiation exchange. At intermediate distances, interference effects cause wavy behavior. Below about half a micron, photon tunneling dominates and the refrigeration rate increases. For these materials, above-bandgap near-field radiation grows more than sub-bandgap phonon polariton parasitic exchange due to the material selection. (Reprinted figure with permission from Elsevier from Liu et al. [100].)
Fig.10  Power density (P) and coefficient of performance (COP) of a negative electroluminescent refrigerator at 300 K at different vacuum gap distances from the cooled surface at 290 K. (a) represents the ideal case with no Auger recombination and no sub-bandgap radiation due to free carriers, but (b) includes these loss mechanisms. Auger recombination does not decrease power density since it takes place in the p-n device and the temperatures are fixed, but it does degrade the COP. Sub-bandgap free carrier radiation requires the device to be operated at higher voltage in the near-field to make up for increased radiation from the p-n device to the cooled object. (Reprinted with permission from Chen et al. [105]. Copyright 2016 by the American Physical Society)
1 Wernsman B, Mahorter  R G, Siergiej  R, Link S D,  Wehrer R J,  Belanger S J,  Fourspring P,  Murray S,  Newman F,  Taylor D,  Rahmlow T. Advanced thermophotovoltaic devices for space nuclear power systems. AIP Conference Proceedings, 2005, 746(1): 1441–1448
https://doi.org/10.1063/1.1867275
2 Santhanam P, Gray  D J, Ram  R J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Physical Review Letters, 2012, 108(9): 097403
https://doi.org/10.1103/PhysRevLett.108.097403
3 Green M A. Solar Cells: Operating Principles, Technology and System Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982
4 Wedlock B D. Thermo-photo-voltaic energy conversion. Proceedings of the IEEE, 1963, 51(5): 694–698
https://doi.org/10.1109/PROC.1963.2261
5 Bauer T. Thermophotovoltaics Basic Principles and Critical Aspects of System Design. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011
6 Strandberg R. Theoretical efficiency limits for thermoradiative energy conversion. Journal of Applied Physics, 2015, 117(5): 055105
https://doi.org/10.1063/1.4907392
7 Tauc J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction. Cechoslovackij fiziceskij zurnal, 1957, 7(3): 275–276
8 Berdahl P. Radiant refrigeration by semiconductor diodes. Journal of Applied Physics, 1985, 58(3): 1369–1374
https://doi.org/10.1063/1.336309
9 Planck M. The Theory of Heat Radiation. Philadelphia, PA: P. Blakiston’s Son & Co, 1914
10 Polder D, Van Hove  M. Theory of radiative heat transfer between closely spaced bodies. Physical Review B: Condensed Matter and Materials Physics, 1971, 4(10): 3303–3314
https://doi.org/10.1103/PhysRevB.4.3303
11 Pendry J B. Radiative exchange of heat between nanostructures. Journal of Physics Condensed Matter, 1999, 11(35): 6621–6633
https://doi.org/10.1088/0953-8984/11/35/301
12 Joulain K, Mulet  J P, Marquier  F, Carminati R,  Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 2005, 57(3–4): 59–112
https://doi.org/10.1016/j.surfrep.2004.12.002
13 Basu S, Zhang  Z M, Fu  C J. Review of near-field thermal radiation and its application to energy conversion. International Journal of Energy Research, 2009, 33(13): 1203–1232
https://doi.org/10.1002/er.1607
14 Zhang Z M. Nano/microscale Heat Transfer. New York: McGraw-Hill, 2007
15 Biehs S A, Ben-Abdallah  P, Rosa F. Nanoscale radiative heat transfer and its applications. In: Morozhenko V, eds. Infrared Radiation. London: InTech, 2012, 1–26
16 Reid M T H,  Rodriguez A W,  Johnson S G. Fluctuation-induced phenomena in nanoscale systems: harnessing the power of noise. Proceedings of the IEEE, 2013, 101(2): 531–545
https://doi.org/10.1109/JPROC.2012.2191749
17 Song B, Fiorino  A, Meyhofer E,  Reddy P. Near-field radiative thermal transport: from theory to experiment. AIP Advances, 2015, 5(5): 053503
https://doi.org/10.1063/1.4919048
18 Liu X, Wang  L, Zhang Z M. Near-field thermal radiation: recent progress and outlook. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(2): 98–126
https://doi.org/10.1080/15567265.2015.1027836
19 Francoeur M, Pinar Mengüç  M. Role of fluctuational electrodynamics in near-field radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 280–293
https://doi.org/10.1016/j.jqsrt.2007.08.017
20 Hu L, Narayanaswamy  A, Chen X,  Chen G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Applied Physics Letters, 2008, 92(13): 133106
https://doi.org/10.1063/1.2905286
21 Rousseau E, Siria  A, Jourdan G,  Volz S, Comin  F, Chevrier J,  Greffet J J. Radiative heat transfer at the nanoscale. Nature Photonics, 2009, 3(9): 514–517
https://doi.org/10.1038/nphoton.2009.144
22 St-Gelais R, Guha  B, Zhu L,  Fan S, Lipson  M. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Letters, 2014, 14(12): 6971–6975
https://doi.org/10.1021/nl503236k
23 Kim K, Song  B, Fernández-Hurtado  V, Lee W,  Jeong W,  Cui L, Thompson  D, Feist J,  Reid M T H,  García-Vidal F J,  Cuevas J C,  Meyhofer E,  Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391
https://doi.org/10.1038/nature16070
24 St-Gelais R, Zhu  L, Fan S,  Lipson M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11(6): 515–519
https://doi.org/10.1038/nnano.2016.20
25 Shchegrov A V,  Joulain K,  Carminati R,  Greffet J J. Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 2000, 85(7): 1548–1551
https://doi.org/10.1103/PhysRevLett.85.1548
26 Howell J R, Menguc  M P, Siegel  R. Thermal Radiation Heat Transfer. Boca Raton: CRC press, 2010
27 Rytov S, Kravtsov  Y A, Tatarskii  V. Priniciples of Statistical Radiophysics: Elements of Random Fields. Berlin: Springer, 1989
28 Francoeur M, Pinar Mengüç  M, Vaillon R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(18): 2002–2018
https://doi.org/10.1016/j.jqsrt.2009.05.010
29 Bright T J, Liu  X L, Zhang  Z M. Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials. Optics Express, 2014, 22(S4): A1112–A1127
https://doi.org/10.1364/OE.22.0A1112
30 Song B, Ganjeh  Y, Sadat S,  Thompson D,  Fiorino A,  Fernandez-Hurtado V,  Feist J,  Garcia-Vidal F J,  Cuevas J C,  Reddy P,  Meyhofer E. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nature Nanotechnology, 2015, 10(3): 253–258
https://doi.org/10.1038/nnano.2015.6
31 Shi J W, Liu  B A, Li  P F, Ng  L Y, Shen  S. Near-field energy extraction with hyperbolic metamaterials. Nano Letters, 2015, 15(2): 1217–1221
https://doi.org/10.1021/nl504332t
32 Kim K, Song  B, Fernandez-Hurtado V, Lee W,  Jeong W H,  Cui L J,  Thompson D,  Feist J,  Reid M T H,  Garcia-Vidal F J,  Cuevas J C,  Meyhofer E,  Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391
https://doi.org/10.1038/nature16070
33 Ijiro T, Yamada  N. Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Applied Physics Letters, 2015, 106(2): 023103
https://doi.org/10.1063/1.4905601
34 Ito K, Miura  A, Iizuka H,  Toshiyoshi H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Applied Physics Letters, 2015, 106(8): 083504
https://doi.org/10.1063/1.4913692
35 Lim M, Lee  S S, Lee  B J. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(19): 195136
https://doi.org/10.1103/PhysRevB.91.195136
36 Bernardi M P, Milovich  D, Francoeur M. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nature Communications, 2016, 7: 12900
https://doi.org/10.1038/ncomms12900
37 Watjen J I, Zhao  B, Zhang Z M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Applied Physics Letters, 2016, 109(20): 203112
https://doi.org/10.1063/1.4967384
38 Boriskina Svetlana V,  Tong Jonathan K,  Hsu W C,  Liao B, Huang  Y, Chiloyan V,  Chen G. Heat meets light on the nanoscale. Nanophotonics, 2016, 5(1): 134–160
39 Wurfel P. The chemical potential of radiation. Journal of Physics. C. Solid State Physics, 1982, 15(18): 3967–3985
https://doi.org/10.1088/0022-3719/15/18/012
40 Brennan K F. The Physics of Semiconductors. Cambridge: Cambridge University Press, 1999
41 Landsberg P T. Photons at non-zero chemical potential. Journal of Physics. C. Solid State Physics, 1981, 14(32): L1025–L1027
https://doi.org/10.1088/0022-3719/14/32/011
42 Landsberg P T,  Tonge G. Thermodynamic energy conversion efficiencies. Journal of Applied Physics, 1980, 51(7): R1–R20
https://doi.org/10.1063/1.328187
43 Dorofeyev I. Thermodynamic functions of fluctuating electromagnetic fields within a heterogeneous system. Physica Scripta, 2011, 84(5): 055003
https://doi.org/10.1088/0031-8949/84/05/055003
44 Essex C, Kennedy  D C, Berry  R S. How hot is radiation? American Journal of Physics, 2003, 71(10): 969–978
https://doi.org/10.1119/1.1603268
45 Nelson R E. A brief history of thermophotovoltaic development. Semiconductor Science and Technology, 2003, 18(5): S141–S143
https://doi.org/10.1088/0268-1242/18/5/301
46 Broman L. Thermophotovoltaics bibliography. Progress in Photovoltaics: Research and Applications, 1995, 3(1): 65–74
https://doi.org/10.1002/pip.4670030108
47 Basu S, Chen  Y B, Zhang  Z M. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6-7): 689–716
https://doi.org/10.1002/er.1286
48 Zhou Z G, Sakr  E, Sun Y B,  Bermel P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21
https://doi.org/10.1515/nanoph-2016-0011
49 Mustafa K F, Abdullah  S, Abdullah M Z,  Sopian K. A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable & Sustainable Energy Reviews, 2017, 71: 572–584
https://doi.org/10.1016/j.rser.2016.12.085
50 Datas A, Martí  A. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296
https://doi.org/10.1016/j.solmat.2016.12.007
51 Bauer T, Forbes  I, Pearsall N. The potential of thermophotovoltaic heat recovery for the UK industry. International Journal of Ambient Energy, 2004, 25(1): 19–25
https://doi.org/10.1080/01430750.2004.9674933
52 Ostrowski L J,  Pernisz U C,  Fraas L M. Thermophotovoltaic energy conversion: technology and market potential. AIP Conference Proceedings, 1996, 358(1): 251–262
https://doi.org/10.1063/1.49691
53 Ungaro C, Gray  S K, Gupta  M C. Solar thermophotovoltaic system using nanostructures. Optics Express, 2015, 23(19): A1149–A1156
https://doi.org/10.1364/OE.23.0A1149
54 Bierman D M, Lenert  A, Chan W R,  Bhatia B,  Celanović I,  Soljačić M,  Wang E N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068
https://doi.org/10.1038/nenergy.2016.68
55 Wang L P, Zhang  Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902
https://doi.org/10.1063/1.3684874
56 Zhao B, Wang  L, Shuai Y,  Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645
https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047
57 Tong J K, Hsu  W C, Huang  Y, Boriskina S V,  Chen G. Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics. Scientific Reports, 2015, 5(1): 10661
https://doi.org/10.1038/srep10661
58 DeSutter J, Bernardi  M P, Francoeur  M. Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm. Energy Conversion and Management, 2016, 108: 429–438
https://doi.org/10.1016/j.enconman.2015.11.029
59 Whale M D. A fluctuational electrodynamic analysis of microscale radiative transfer and the design of microscale thermophotovoltaic devices. Dissertation for the Doctoral Degree. Cambridge, MA: Massachusetts Institute of Technology, 1997
60 Whale M D, Cravalho  E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130–142
https://doi.org/10.1109/60.986450
61 Pan J L, Choy  H K H, Fonstad  C G. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications. IEEE Transactions on Electron Devices, 2000, 47(1): 241–249
https://doi.org/10.1109/16.817591
62 Narayanaswamy A, Chen  G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544–3546
https://doi.org/10.1063/1.1575936
63 Laroche M, Carminati  R, Greffet J J. Near-field thermophotovoltaic energy conversion. Journal of Applied Physics, 2006, 100(6): 063704
https://doi.org/10.1063/1.2234560
64 Park K, Basu  S, King W P,  Zhang Z M. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 305–316
https://doi.org/10.1016/j.jqsrt.2007.08.022
65 Francoeur M, Vaillon  R, Mengüç M P. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Transactions on Energy Conversion, 2011, 26(2): 686–698
https://doi.org/10.1109/TEC.2011.2118212
66 Ilic O, Jablan  M, Joannopoulos J D,  Celanovic I,  Soljačić M. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Optics Express, 2012, 20(S3): A366–A384 
https://doi.org/10.1364/OE.20.00A366
67 Messina R, Ben-Abdallah  P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Scientific Reports, 2013, 3(1): 1383
https://doi.org/10.1038/srep01383
68 Guo Y, Jacob  Z. Thermal hyperbolic metamaterials. Optics Express, 2013, 21(12): 15014–15019
https://doi.org/10.1364/OE.21.015014
69 Svetovoy V B, Palasantzas  G. Graphene-on-silicon near-field thermophotovoltaic cell. Physical Review Applied, 2014, 2(3): 034006
https://doi.org/10.1103/PhysRevApplied.2.034006
70 Bright T J, Wang  L P, Zhang  Z M. Performance of near-field thermophotovoltaic cells enhanced with a backside reflector. Journal of Heat Transfer, 2014, 136(6): 062701–062709
71 Chen K, Santhanam  P, Fan S. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery. Applied Physics Letters, 2015, 107(9): 091106
https://doi.org/10.1063/1.4929949
72 Bernardi M P, Dupré  O, Blandre E,  Chapuis P O,  Vaillon R,  Francoeur M. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Scientific Reports, 2015, 5(1): 11626
https://doi.org/10.1038/srep11626
73 Molesky S, Jacob  Z. Ideal near-field thermophotovoltaic cells. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(20): 205435
https://doi.org/10.1103/PhysRevB.91.205435
74 Lim M, Jin  S, Lee S S,  Lee B J. Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications. Optics Express, 2015, 23(7): A240–A253
https://doi.org/10.1364/OE.23.00A240
75 Chang J Y, Yang  Y, Wang L. Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. International Journal of Heat and Mass Transfer, 2015, 87: 237–247
https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.087
76 Jin S, Lim  M, Lee S S,  Lee B J. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Optics Express, 2016, 24(6): A635–A649
https://doi.org/10.1364/OE.24.00A635
77 Lim M, Lee  S S, Lee  B J. Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 197: 84–94
https://doi.org/10.1016/j.jqsrt.2017.03.011
78 St-Gelais R, Bhatt  G R, Zhu  L, Fan S,  Lipson M. Hot carrier-based near-field thermophotovoltaic energy conversion. ACS Nano, 2017, 11(3): 3001–3009
https://doi.org/10.1021/acsnano.6b08597
79 Watjen J I, Liu  X L, Zhao  B, Zhang Z M. A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. Journal of Heat Transfer, 2017, 139(5): 052704
https://doi.org/10.1115/1.4035356
80 DiMatteo R S, Greiff  P, Finberg S L,  Young-Waithe K A,  Choy H K H,  Masaki M M,  Fonstad C G. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Applied Physics Letters, 2001, 79(12): 1894–1896
https://doi.org/10.1063/1.1400762
81 DiMatteo R, Greiff  P, Seltzer D,  Meulenberg D,  Brown E,  Carlen E,  Kaiser K,  Finberg S,  Nguyen H,  Azarkevich J,  Baldasaro  P, Beausang  J, Danielson L, Dashiell  M, DePoy D, Ehsani H,Topper   W, Rahner K, Sieriej R. Micron-gap thermophotovoltaics (MTPV). AIP Conference Proceedings, 2004, 738(1): 42–51
https://doi.org/10.1063/1.1841878
82 Hanamura K, Mori  K. Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface. AIP Conference Proceedings, 2007, 890(1): 291–296
https://doi.org/10.1063/1.2711747
83 Poddubny A, Iorsh  I, Belov P,  Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957
https://doi.org/10.1038/nphoton.2013.243
84 Guo Y, Cortes  C L, Molesky  S, Jacob Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters, 2012, 101(13): 131106
https://doi.org/10.1063/1.4754616
85 Byrnes S J, Blanchard  R, Capasso F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 3927–3932
https://doi.org/10.1073/pnas.1402036111
86 Santhanam P, Fan  S H. Thermal-to-electrical energy conversion by diodes under negative illumination. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(16): 161410 (R) 
https://doi.org/10.1103/PhysRevB.93.161410
87 Hsu W C, Tong  J K, Liao  B L, Huang  Y, Boriskina S V,  Chen G. Entropic and near-field improvements of thermoradiative cells. Scientific Reports, 2016, 6(1): 34837
https://doi.org/10.1038/srep34837
88 Wang B, Lin  C, Teo K H,  Zhang Z. Thermoradiative device enhanced by near-field coupled structures. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 196: 10–16
https://doi.org/10.1016/j.jqsrt.2017.03.038
89 Fernández J J. Thermoradiative energy conversion with quasi-fermi level variations. IEEE Transactions on Electron Devices, 2017, 64(1): 250–255
https://doi.org/10.1109/TED.2016.2627605
90 Dousmanis G C,  Mueller C W,  Nelson H,  Petzinger K G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Physical Review, 1964, 133(1A): A316–A318
https://doi.org/10.1103/PhysRev.133.A316
91 Mal’Shukov A,  Chao K. Opto-thermionic refrigeration in semiconductor heterostructures. Physical Review Letters, 2001, 86(24): 5570–5573
https://doi.org/10.1103/PhysRevLett.86.5570
92 Han P, Jin  K, Zhou Y,  Wang X, Ma  Z, Ren S F,  Mal’Shukov A G,  Chao K A. Analysis of optothermionic refrigeration based on semiconductor heterojunction. Journal of Applied Physics, 2006, 99(7): 074504
https://doi.org/10.1063/1.2188249
93 Yu S Q, Wang  J B, Ding  D, Johnson S R,  Vasileska D,  Zhang Y H. Impact of electronic density of states on electroluminescence refrigeration. Solid-State Electronics, 2007, 51(10): 1387–1390
https://doi.org/10.1016/j.sse.2007.06.015
94 Heikkilä O, Oksanen  J, Tulkki J. Ultimate limit and temperature dependency of light-emitting diode efficiency. Journal of Applied Physics, 2009, 105(9): 093119
https://doi.org/10.1063/1.3125514
95 Yen S T, Lee  K C. Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation. Journal of Applied Physics, 2010, 107(5): 054513
https://doi.org/10.1063/1.3326944
96 Oksanen J, Tulkki  J. Thermophotonic heat pump—a theoretical model and numerical simulations. Journal of Applied Physics, 2010, 107(9): 093106
https://doi.org/10.1063/1.3419716
97 Lee K C, Yen  S T. Photon recycling effect on electroluminescent refrigeration. Journal of Applied Physics, 2012, 111(1): 014511
https://doi.org/10.1063/1.3676249
98 Santhanam P, Huang  D, Gray D J,  Ram R J. Electro-luminescent cooling: light emitting diodes above unity efficiency. In: Laser Refrigeration of Solids VI, San Francisco, CA: SPIE, 2013, 863807
99 Chen K, Santhanam  P, Sandhu S,  Zhu L, Fan  S. Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134301
https://doi.org/10.1103/PhysRevB.91.134301
100 Liu X L, Zhang  Z M. High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy, 2016, 26: 353–359
https://doi.org/10.1016/j.nanoen.2016.05.049
101 Ashley T, Elliott  C T, Gordon  N T, Hall  R S, Johnson  A D, Pryce  G J. Negative luminescence from In1−xAlxSb and CdxHg1−xTe diodes. Infrared Physics & Technology, 1995, 36(7): 1037–1044 
https://doi.org/10.1016/1350-4495(95)00043-7
102 Elliott C T. Negative luminescence and its applications. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 567
103 Ashley T, Nash  G R. Negative luminescence. In: Krier A, eds. Mid-infrared Semiconductor Optoelectronics. London: Springer London, 2006, 453–485
104 Ivanov-Omskii V I,  Matveev B A. Negative luminescence and devices based on this phenomenon. Semiconductors, 2007, 41(3): 247–258
https://doi.org/10.1134/S1063782607030013
105 Chen K, Santhanam  P, Fan S. Near-field enhanced negative luminescent refrigeration. Physical Review Applied, 2016, 6(2): 024014
https://doi.org/10.1103/PhysRevApplied.6.024014
[1] Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG. Spectral emittance measurements of micro/nanostructures in energy conversion: a review[J]. Front. Energy, 2020, 14(3): 482-509.
[2] Qing NI, Hassan ALSHEHRI, Yue YANG, Hong YE, Liping WANG. Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells[J]. Front. Energy, 2018, 12(1): 185-194.
[3] Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU. Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes[J]. Front Energ, 2013, 7(2): 146-154.
[4] Xi WU, Hong YE, Jianxiang WANG, Jie HE, Jian YANG. Effectiveness analysis and optimum design of the rotary regenerator for thermophotovoltaic (TPV) system[J]. Front Energ, 2012, 6(2): 193-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed