Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 185-194    https://doi.org/10.1007/s11708-018-0522-x
RESEARCH ARTICLE
Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells
Qing NI1, Hassan ALSHEHRI2, Yue YANG3, Hong YE4, Liping WANG2()
1. School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA; Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
2. School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA
3. School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA; School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518052, China
4. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
 Download: PDF(552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ultrathin cells have gained increasing attention due to their potential for reduced weight, reduced cost and increased flexibility. However, the light absorption in ultrathin cells is usually very weak compared to the corresponding bulk cells. To achieve enhanced photon absorption in ultrathin thermophotovoltaic (TPV) cells, this work proposed a film-coupled metamaterial structure made of nanometer-thick gallium antimonide (GaSb) layer sandwiched by a top one-dimensional (1D) metallic grating and a bottom metal film. The spectral normal absorptance of the proposed structure was calculated using the rigorous coupled-wave algorithm (RCWA) and the absorption enhancement was elucidated to be attributed to the excitations of magnetic polariton (MP), surface plasmon polariton (SPP), and Fabry-Perot (FP) resonance. The mechanisms of MP, SPP, and FP were further confirmed by an inductor-capacitor circuit model, dispersion relation, and phase shift, respectively. Effects of grating period, width, spacer thickness, as well as incidence angle were discussed. Moreover, short-circuit current density, open-circuit voltage, output electric power, and conversion efficiency were evaluated for the ultrathin GaSb TPV cell with a film-coupled metamaterial structure. This work will facilitate the development of next-generation low-cost ultrathin infrared TPV cells.

Keywords metamaterial      thermophotovoltaic      plasmonics      light trapping      selective absorption     
Corresponding Author(s): Liping WANG   
Online First Date: 26 December 2017    Issue Date: 08 March 2018
 Cite this article:   
Qing NI,Hassan ALSHEHRI,Yue YANG, et al. Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells[J]. Front. Energy, 2018, 12(1): 185-194.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0522-x
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/185
Fig.1  Schematic of the proposed film-coupled metamaterial with three layers of Ag grating, ultrathin GaSb layer, and Ag substrate
Fig.2  (a) Comparison of normal absorptance of the proposed film-coupled metamaterial GaSb cell between TM and TE incident waves; (b) comparison of normal absorptance between different samples including the film-coupled metamaterial structure, a GaSb-on-Ag structure, and a free-standing GaSb under TM waves
Fig.3  (a) Electromagnetic field distribution at l = 1.69 mm for normal incidence where MP is excited under TM waves; (b) schematic of the LC circuit model
Fig.4  The comparison of the normal absorptance of the proposed metamaterial structure from RCWA calculation and that of a multilayer structure with the homogeneous 1D Ag grating layer described by the effective dielectric functions
Fig.5  (a) The spectral normal absorptance with varying grating width (w); (b) comparison of the MP resonance wavelengths between the RCWA simulation and the LC circuit model; (c) the spectral normal absorptance with varying grating period (L); (d) unfolded and folded SPP dispersion curves at different grating periods (L); (e) the spectral normal absorptance with varying spacer thickness (d); (f) comparison of the FP resonance wavelengths between RCWA simulation and the phase shift prediction
Fig.6  Contour plot of the spectral-directional absorptance of the film-coupled metamaterial structure as a function of wavenumber and x-direction wavevector for (a) TM waves and (b) TE waves
Fig.7  Normalized energy absorption in the GaSb layer, the metals, and the entire structure for the film-coupled metamaterial structure
Fig.8  (a) Spectral distribution for radiative heat fluxes from a blackbody at different temperatures. The spectral emittance of an ideal emitter for a TPV system is also presented; (b) the short circuit current Jsc in the ultrathin GaSb cell under blackbody radiation with different emitter temperatures; (c) effect of l1 on Jsc and Voc; (d) Pin,Pcell, and h when the selective emitter is at T = 2000 K
Fig.9  (a) Output electric power; (b) Cell efficiency with varied selective emitter temperature T and emittance short cutoff wavelength l1
1 Emrani A, Vasekar  P, Westgate C R. Effects of sulfurization temperature on CZTS thin film solar cell performances. Solar Energy, 2013, 98(PC): 335–340
2 Dhakal T P, Peng  C Y, Reid Tobias  R, Dasharathy R,  Westgate C R. Characterization of a CZTS thin film solar cell grown by sputtering method. Solar Energy, 2014, 100: 23–30
https://doi.org/10.1016/j.solener.2013.11.035
3 Ge J, Jiang  J, Yang P,  Peng C, Huang  Z, Zuo S,  Yang L, Chu  J A. 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell. Solar Energy Materials and Solar Cells, 2014, 125: 20–26
https://doi.org/10.1016/j.solmat.2014.02.020
4 Wang W, Winkler  M T, Gunawan  O, Gokmen T,  Todorov T K,  Zhu Y, Mitzi  D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): 1301465
5 Lee Y S, Gershon  T, Gunawan O,  Todorov T K,  Gokmen T,  Virgus Y,  Guha S. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority  carrier diffusion length. Advanced Energy Materials, 2015, 5 (7): 1401372
6 Lee B J, Wang  L P, Zhang  Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336
https://doi.org/10.1364/OE.16.011328
7 Wu C, Neuner  B, Shvets  G, John J, Milder A, Zollars B, Savoy S.Large-area wide-angle spectrally selective plasmonic absorber. Physical Review B, 2011, 84(7): 075102
8 Wang L P, Zhang  Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902
9 Wang H, Wang  L. Perfect selective metamaterial solar absorbers. Optics Express, 2013, 21(S6): A1078–A1093
https://doi.org/10.1364/OE.21.0A1078
10 Zhao B, Wang  L, Shuai Y,  Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645
https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047
11 Wang H, Wang  L. Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures. AIP Advances, 2015, 5(2): 027104
12 Wang H, Wang  L. Tailoring thermal radiative properties with film-coupled concave grating metamaterials. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 158: 127–135
https://doi.org/10.1016/j.jqsrt.2014.11.015
13 Wang H, Prasad Sivan  V, Mitchell A,  Rosengarten G,  Phelan P,  Wang L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 2015, 137: 235–242
https://doi.org/10.1016/j.solmat.2015.02.019
14 Wang H, Chang  J Y, Yang  Y, Wang L. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters. International Journal of Heat and Mass Transfer, 2016, 98: 788–798
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.074
15 Matsuno Y, Sakurai  A. Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings. Optics Communications, 2017, 385: 118–123
https://doi.org/10.1016/j.optcom.2016.10.044
16 Basu S, Chen  Y B, Zhang  Z. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6–7): 689–716
https://doi.org/10.1002/er.1286
17 Wang LP, Zhang  Z M. Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures. Journal of Heat Transfer, 2013, 135 (9): 091014
18 Moharam M G, Grann  E B, Pommet  D A, Gaylord  T K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1995, 12(5): 1068–1076
https://doi.org/10.1364/JOSAA.12.001068
19 Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1996, 13(9): 1870–1876
https://doi.org/10.1364/JOSAA.13.001870
20 Guérout R, Lussange  J, Chan H B,  Lambrecht A,  Reynaud S. Thermal Casimir force between nanostructured surfaces. Physical Review A—Atomic, Molecular, and Optical Physics, 2013, 87(5): 052514
21 West P R, Ishii  S, Naik G V,  Emani N K,  Shalaev V M,  Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808
https://doi.org/10.1002/lpor.200900055
22 Ferrini R, Patrini  M, Franchi S. Optical function from 0.02 to 6 eV of AlxGa1−xSb/GaSb epitaxial layers. Journal of Applied Physics, 1998 84: 4517–4524
23 Zhou J, Economon  E N, Koschny  T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622
https://doi.org/10.1364/OL.31.003620
24 Zhang Z M. Nano/microscale Heat Transfer. New York: McGraw-Hill, 2007
25 Wang L P, Lee  B J, Wang  X J, Zhang  Z M. Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities. International Journal of Heat and Mass Transfer, 2009, 52(13–14): 3024–3031
https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.042
26 Zhao B, Zhao  J M, Zhang  Z M. Enhancement of near-infrared absorption in graphene with metal gratings. Applied Physics Letters, 2014, 105(3): 031905
27 Park K, Basu  S, King W P,  Zhang Z. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 305–316
https://doi.org/10.1016/j.jqsrt.2007.08.022
28 Tong J K, Hsu  W C, Huang  Y, Boriskina S V,  Chen G. Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics. Scientific Reports, 2015, 5: 10661
29 Bergman T L, Lavine  A S, Incropera  F P, DeWitt  D P. Fundamentals of Heat and Mass Transfer. 7th ed.   Hoboken: John Wiley & Sons, 2011
30 Ni Q, Ye  H, Shu Y,  Lin Q. A theoretical discussion on the internal quantum efficiencies of the epitaxial single crystal GaSb thin film cells with different p-n junctions. Solar Energy Materials and Solar Cells, 2016, 149: 88–96
https://doi.org/10.1016/j.solmat.2015.12.039
[1] Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG. Spectral emittance measurements of micro/nanostructures in energy conversion: a review[J]. Front. Energy, 2020, 14(3): 482-509.
[2] Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
[3] Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU. Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature production processes[J]. Front Energ, 2013, 7(2): 146-154.
[4] Xi WU, Hong YE, Jianxiang WANG, Jie HE, Jian YANG. Effectiveness analysis and optimum design of the rotary regenerator for thermophotovoltaic (TPV) system[J]. Front Energ, 2012, 6(2): 193-199.
[5] Ceji FU, Zhuomin M. ZHANG. Thermal radiative properties of metamaterials and other nanostructured materials: A review[J]. Front Energ Power Eng Chin, 2009, 3(1): 11-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed