Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 87-96    https://doi.org/10.1007/s11708-018-0513-y
REVIEW ARTICLE
Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies
Guangzhao QIN1, Ming HU2()
1. Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany
2. Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany; Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen 52062, Germany
 Download: PDF(368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/opto-electronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this mini-review, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the van der Waals (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.

Keywords thermal transport      phosphorene      resonant bonding     
Corresponding Author(s): Ming HU   
Just Accepted Date: 27 December 2017   Online First Date: 30 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Guangzhao QIN,Ming HU. Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies[J]. Front. Energy, 2018, 12(1): 87-96.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0513-y
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/87
Fig.1  Top and side views of phosphorene structure (The unit cell is marked with a dashed rectangle. The zigzag and armchair directions are indicated with arrows. Reproduced by permission of the PCCP Owner Societies [32].)
Fig.2  Comparison of thermal conductivity (k) of phosphorene calculated from different methods (such as analytical estimation [21,26], classical molecular dynamics (MD) simulation using optimized Stillinger-Weber (SW) potential [2729], solving the phonon Boltzmann transport equation (BTE) based on an harmonic lattice dynamics (ALD) using the iterative method [22,31,38,42] or the single relaxation time approximation (RTA) [22,3032], and spectral energy density (SED) coupled with the equilibrium ab-initio molecular dynamics (EAIMD) simulations [38]. The methods employed for calculations are labeled on site in five groups. The corresponding author for each reported k is indicated in the horizontal axis.
Fig.3  Thermal conductivity (k) of phosphorene and its anisotropy at room temperature (300 K) as a function of system size. The anisotropy is defined as the kzigzag/karmchair. The k along the armchair direction obtained by NEAIMD simulations is plotted for comparison, where the error bar is determined during the calculation of temperature gradient. Reprinted with permission from Ref. [38]. Copyright 2016 by the American Physical Society.
Fig.4  Lattice thermal conductivity of phosphorene at room temperature (300 K) with respect to the interaction cutoff distance (ALD/BTE). When doing first-principles calculations for the IFCs, the optB88 (including vdW interactions) and PBE (NOT including vdW interactions) functionals are adopted and the results are shown in (a) and (b), respectively. Reproduced with the permission from Ref. [38] and the Creative Commons Attribution 4.0 International License in Ref. [31]. Copyrights 2016 by the American Physical Society and 2015 by Nature Publishing Group.
Fig.5  (Color online) Lattice thermal conductivity (k) of phosphorene as a function of the size of Q-grid (N× N× 1). The PBE functional is adopted when doing first-principles calculations for the IFCs. The size dependence/independence of k shows different behavior for different cutoff distances of (a) 7.88 Å and (b) 4.4 Å. Reprinted with permissions from Ref. [38] and Ref. [30]. Copyright 2014/2016 by the American Physical Society.
Fig.6  (Color online) Insight into the resonant bonding and phonon anharmonicity in phosphorene

(a) Orbital-projected electronic band structure of phosphorene (The size of the circles represents the relative contribution from the corresponding orbitals. The s-orbital is mainly confined 9 eV below the valence band maximum, showing weak hybridization with px/py/pz-orbital. Owing to the weak sp-hybridization, the three p-electrons are highly delocalized and form the resonant bonding, while the remaining two s-electrons are localized around P atom being lone-pair.); (b) phonon dispersion curves and density of states (DOS) of phosphorene (The soft out-of-plane TOz phonon branch and the three acoustic phonon branches are in different colors and labeled on site. Inset: The BZ with high-symmetry k-points indicated. Reprinted with permission from Ref. [38]. Copyright 2016 by the American Physical Society.)

1 Balandin A A, Nika  D L. Phononics in low-dimensional materials. Materials Today, 2012, 15(6): 266–275
https://doi.org/10.1016/S1369-7021(12)70117-7
2 Zhang Y, Wang  H, Luo Z,  Tan H T,  Li B, Sun  S, Li Z,  Zong Y, Xu  Z J, Yang  Y, Khor K A,  Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453 
https://doi.org/10.1002/aenm.201600453
3 Wan F, Wu  X L, Guo  J Z, Li  J Y, Zhang  J P, Niu  L, Wang R S. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy, 2015, 13: 450–457
https://doi.org/ 10.1016/j.nanoen.2015.03.017
4 Liu D H, Lü  H Y, Wu  X L, Wang  J, Yan X,  Zhang J P,  Geng H B,  Zhang Y,  Yan Q Y. A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz, 2016, 1(6): 496–501
https://doi.org/10.1039/C6NH00150E
5 Liu H, Neal  A T, Zhu  Z, Luo Z,  Xu X, Tománek  D, Ye P D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041
https://doi.org/10.1021/nn501226z pmid: 24655084
6 Li L, Yu  Y, Ye G J,  Ge Q, Ou  X, Wu H,  Feng D, Chen  X H, Zhang  Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377
https://doi.org/10.1038/nnano.2014.35 pmid: 24584274
7 Xia F, Wang  H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458
https://doi.org/ 10.1038/ncomms5458 pmid: 25041752
8 Tran V, Soklaski  R, Liang Y,  Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235319 
https://doi.org/10.1103/PhysRevB.89.235319
9 Churchill H O H,  Jarillo-Herrero P. Two-dimensional crystals: phosphorus joins the family. Nature Nanotechnology, 2014, 9(5): 330–331
https://doi.org/10.1038/nnano.2014.85 pmid: 24801536
10 Koenig S P, Doganov  R A, Schmidt  H, Castro Neto A H,  Ozyilmaz B. Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014, 104(10): 103106
https://doi.org/ 10.1063/1.4868132
11 Qin G, Qin  Z, Yue S Y,  Yan Q B,  Hu M. External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale, 2017, 9(21): 7227–7234
https://doi.org/10.1039/C7NR01596H pmid: 28513696
12 Rodin A S, Carvalho  A, Castro Neto A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801
https://doi.org/10.1103/PhysRevLett.112.176801 pmid: 24836264
13 Qiao J, Kong  X, Hu Z X,  Yang F, Ji  W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5: 4475
https://doi.org/10.1038/ncomms5475 pmid: 25042376
14 Zhu Z, Tománek  D. Semiconducting layered blue phosphorus: a computational study. Physical Review Letters, 2014, 112(17): 176802
https://doi.org/10.1103/PhysRevLett.112.176802 pmid: 24836265
15 Jiang J W, Park  H S. Negative Poisson’s ratio in single-layer black phosphorus. Nature Communications, 2014, 5: 4727
https://doi.org/10.1038/ncomms5727 pmid: 25131569
16 Wei Q, Peng  X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104(25): 251915
https://doi.org/10.1063/1.4885215
17 Qin G, Yan  Q B, Qin  Z, Yue S Y,  Cui H J,  Zheng Q R,  Su G. Corrigendum: hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Scientific Reports, 2016, 6(1): 21233
https://doi.org/10.1038/srep21233 pmid: 26943898
18 Low T, Engel  M, Steiner M,  Avouris P. Origin of photoresponse in black phosphorus phototransistors. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 081408 
https://doi.org/10.1103/PhysRevB.90.081408
19 Lv H Y, Lu  W J, Shao  D F, Sun  Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433 
https://doi.org/10.1103/PhysRevB.90.085433
20 Akinwande D, Petrone  N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5: 5678
https://doi.org/10.1038/ncomms6678 pmid: 25517105
21 Fei R, Faghaninia  A, Soklaski R,  Yan J A,  Lo C, Yang  L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399
https://doi.org/10.1021/nl502865s pmid: 25254626
22 Zhu J, Park  H, Chen J,  Gu X, Zhang  H, Karthikeyan S,  Wendel N,  Campbell S A, Dawber M, Du  X, Li M,  Wang J, Yang  R, Wang X. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Advanced Electronic Materials, 2016, 2(5):1600040
https://doi.org/10.1002/aelm.201600040
23 Luo Z, Maassen  J, Deng Y,  Du Y, Garrelts  R P, Lundstrom  M S, Ye  P D, Xu  X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 2015, 6: 8572
https://doi.org/10.1038/ncomms9572 pmid: 26472191
24 Lee S, Yang  F, Suh J,  Yang S, Lee  Y, Li G,  Sung Choe H,  Suslu A,  Chen Y, Ko  C, Park J,  Liu K, Li  J, Hippalgaonkar K,  Urban J J,  Tongay S,  Wu J. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6: 8573
https://doi.org/10.1038/ncomms9573 pmid: 26472285
25 Jang H, Wood  J D, Ryder  C R, Hersam  M C, Cahill  D G. Anisotropic thermal conductivity of exfoliated black phosphorus. Advanced Materials, 2015, 27(48): 8017–8022 
https://doi.org/10.1002/adma.201503466 pmid: 26516073
26 Liu T H, Chang  C C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale, 2015, 7(24): 10648–10654
https://doi.org/10.1039/C5NR01821H pmid: 26024364
27 Hong Y, Zhang  J, Huang X,  Zeng X C. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale, 2015, 7(44): 18716–18724
https://doi.org/10.1039/C5NR03577E pmid: 26502794
28 Xu W, Zhu  L, Cai Y,  Zhang G,  Li B. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study. Journal of Applied Physics, 2015, 117(21): 214308 
https://doi.org/10.1063/1.4922118
29 Zhang Y Y, Pei  Q X, Jiang  J W, Wei  N, Zhang Y W. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale, 2016, 8(1): 483–491
https://doi.org/10.1039/C5NR05451F pmid: 26632915
30 Zhu L, Zhang  G, Li B. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(21): 214302 
https://doi.org/10.1103/PhysRevB.90.214302
31 Jain A, McGaughey  A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501
https://doi.org/10.1038/srep08501 pmid: 25686917
32 Qin G, Yan  Q B, Qin  Z, Yue S Y,  Hu M, Su  G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 4854–4858
https://doi.org/10.1039/C4CP04858J pmid: 25594447
33 Lindsay L, Broido  D A, Mingo  N. Flexural phonons and thermal transport in multilayer graphene and graphite. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(23): 235428 
https://doi.org/10.1103/PhysRevB.83.235428
34 Castro Neto A H,  Guinea F,  Peres N M R,  Novoselov K S,  Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
https://doi.org/10.1103/RevModPhys.81.109
35 Zhang X L, Xie  H, Hu M,  Bao H, Yue  S Y, Qin  G Z, Su  G. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(5): 054310 
https://doi.org/10.1103/PhysRevB.89.054310
36 Xie H, Hu  M, Bao H. Thermal conductivity of silicene from first-principles. Applied Physics Letters, 2014, 104(13): 131906 
https://doi.org/10.1063/1.4870586
37 Fei R, Yang  L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Letters, 2014, 14(5): 2884–2889
https://doi.org/10.1021/nl500935z pmid: 24779386
38 Qin G, Zhang  X L, Yue  S Y, Qin  Z, Wang H M,  Han Y, Hu  M. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(16): 165445
https://doi.org/10.1103/PhysRevB.94.165445
39 Qin G, Qin  Z, Fang W Z,  Zhang L C,  Yue S Y,  Yan Q B,  Hu M, Su  G. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: a comparative study. Nanoscale, 2016, 8(21): 11306–11319
https://doi.org/10.1039/C6NR01349J pmid: 27189263
40 Zhang L C, Qin  G, Fang W Z,  Cui H J,  Zheng Q R,  Yan Q B,  Su G. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Scientific Reports, 2016, 6: 19830
41 Ong Z Y, Cai  Y, Zhang G,  Zhang Y W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. Journal of Physical Chemistry C, 2014, 118(43): 25272–25277
https://doi.org/10.1021/jp5079357
42 Smith B, Vermeersch  B, Carrete J,  Ou E, Kim  J, Mingo N,  Akinwande D,  Shi L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Advanced Materials, 2017, 29(5): 1603756 
https://doi.org/10.1002/adma.201603756 pmid: 27882620
43 Thomas J A, Turney  J E, Iutzi  R M, Amon  C H, McGaughey  A J H. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(8): 081411
https://doi.org/10.1103/PhysRevB.81.081411
44 Larkin J, Turney  J, Massicotte A,  Amon C, Mc-Gaughey  A. Comparison and evaluation of spectral energy methods for predicting phonon properties. Journal of Computational and Theoretical Nanoscience, 2014, 11(1): 249–256
https://doi.org/10.1166/jctn.2014.3345
45 Zhang X, Bao  H, Hu M. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon. Nanoscale, 2015, 7(14): 6014–6022
https://doi.org/10.1039/C4NR06523A pmid: 25762032
46 Sun B, Gu  X, Zeng Q,  Huang X,  Yan Y, Liu  Z, Yang R,  Koh Y K. Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Advanced Materials, 2017, 29(3): 1603297
https://doi.org/10.1002/adma.201603297 pmid: 27859658
47 Li W, Carrete  J, Mingo N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Applied Physics Letters, 2013, 103(25): 253103 
https://doi.org/10.1063/1.4850995
48 Li W, Mingo  N, Lindsay L,  Broido D A,  Stewart D A,  Katcho N A. Thermal conductivity of diamond nanowires from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195436
https://doi.org/10.1103/PhysRevB.85.195436
49 Broido D A, Malorny  M, Birner G,  Mingo N,  Stewart D A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, 91(23): 231922
https://doi.org/10.1063/1.2822891
50 Li W, Lindsay  L, Broido D A,  Stewart D A,  Mingo N. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(17): 174307 
https://doi.org/10.1103/PhysRevB.86.174307
51 Li W, Carrete  J, Katcho N A,  Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758 
https://doi.org/10.1016/j.cpc.2014.02.015
52 Carrete J, Li  W, Mingo N,  Wang S, Curtarolo  S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019 
https://doi.org/10.1103/PhysRevX.4.011019
53 Jain A, McGaughey  A J. Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Computational Materials Science, 2015, 110: 115–120
https://doi.org/10.1016/j.commatsci.2015.08.014
54 Lee S, Esfarjani  K, Luo T,  Zhou J, Tian  Z, Chen G. Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5(4): 3525
pmid: 24770354
55 Hu Z X, Kong  X, Qiao J,  Normand B,  Ji W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale, 2016, 8(5): 2740–2750
https://doi.org/10.1039/C5NR06293D pmid: 26763557
56 Kong B D, Paul  S, Nardelli M B,  Kim K W. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Physical Review B: Condensed Matter, 2009, 80(3): 033406
https://doi.org/10.1103/PhysRevB.80.033406
57 Cocemasov A I,  Nika D L,  Balandin A A. Phonons in twisted bilayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(3): 035428
https://doi.org/10.1103/PhysRevB.88.035428
58 Li H, Ying  H, Chen X,  Nika D L,  Cocemasov A I,  Cai W, Balandin  A A, Chen  S. Thermal conductivity of twisted bilayer graphene. Nanoscale, 2014, 6(22): 13402–13408
https://doi.org/10.1039/C4NR04455J pmid: 25273673
59 Zhang X, Gao  Y, Chen Y,  Hu M. Robustly engineering thermal conductivity of bilayer graphene by interlayer bonding. Scientific Reports, 2016, 6(1): 22011
https://doi.org/10.1038/srep22011 pmid: 26911859
60 Qin G, Qin  Z, Wang H,  Hu M. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(19): 195416
https://doi.org/10.1103/PhysRevB.95.195416
61 Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064 pmid: 21778997
62 Gu X, Yang  R. First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. Journal of Applied Physics, 2015, 117(2): 025102
https://doi.org/10.1063/1.4905540
63 Xie H, Ouyang  T, Germaneau É,  Qin G, Hu  M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404
https://doi.org/10.1103/PhysRevB.93.075404
64 Bonini N, Garg  J, Marzari N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Letters, 2012, 12(6): 2673–2678
https://doi.org/10.1021/nl202694m pmid: 22591411
65 Kuang Y, Lindsay  L, Shi S,  Wang X, Huang  B. Thermal conductivity of graphene mediated by strain and size. International Journal of Heat and Mass Transfer, 2016, 101(1): 772–778
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.072
66 Kuang Y D, Lindsay  L, Shi S Q,  Zheng G P. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale, 2016, 8(6): 3760–3767
https://doi.org/10.1039/C5NR08231E pmid: 26815838
67 Lucovsky G, White  R M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1973, 8(2): 660–667
https://doi.org/10.1103/PhysRevB.8.660
68 Shportko K, Kremers  S, Woda M,  Lencer D,  Robertson J,  Wuttig M. Resonant bonding in crystalline phase-change materials. Nature Materials, 2008, 7(8): 653–658
https://doi.org/10.1038/nmat2226 pmid: 18622406
69 Lencer D, Salinga  M, Grabowski B,  Hickel T,  Neugebauer J,  Wuttig M. A map for phase-change materials. Nature Materials, 2008, 7(12): 972–977
https://doi.org/10.1038/nmat2330 pmid: 19011618
70 Matsunaga T, Yamada  N, Kojima R,  Shamoto S,  Sato M, Tanida  H, Uruga T,  Kohara S,  Takata M,  Zalden P,  Bruns G,  Sergueev I,  Wille H C,  Hermann R P,  Wuttig M. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Advanced Functional Materials, 2011, 21(12): 2232–2239
https://doi.org/10.1002/adfm.201002274
[1] Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG. Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices[J]. Front. Energy, 2018, 12(1): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed