Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 137-142    https://doi.org/10.1007/s11708-018-0532-8
RESEARCH ARTICLE
Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices
Pengfei JI1, Yiming RONG1, Yuwen ZHANG2(), Yong TANG3
1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
3. Key Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
 Download: PDF(2558 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Si/Ge superlattices are promising thermoelectric materials to convert thermal energy into electric power. The nanoscale thermal transport in Si/Ge superlattices is investigated via molecular dynamics (MD) simulation in this short communication. The impact of Si and Ge interface on the cross-plane thermal conductivity reduction in the Si/Ge superlattices is studied by designing cone-structured interface and aperiodicity between the Si and Ge layers. The temperature difference between the left and right sides of the Si/Ge superlattices is set up for nonequilibrium MD simulation. The spatial distribution of temperature is recorded to examine whether the steady-state has been reached. As a crucial factor to quantify thermal transport, the temporal evolution of heat flux flowing through Si/Ge superlattices is calculated. Compared with the even interface, the cone-structured interface contributes remarkable resistance to the thermal transport, whereas the aperiodic arrangement of Si and Ge layers with unequal thicknesses has a marginal influence on the reduction of effective thermal conductivity. The interface with divergent cone-structure shows the most excellent performance of all the simulated cases, which brings a 33% reduction of the average thermal conductivity to the other Si/Ge superlattices with even, convergent cone-structured interfaces and aperiodic arrangements. The design of divergent cone-structured interface sheds promising light on enhancing the thermoelectric efficiency of Si/Ge based materials.

Keywords thermoelectric material      thermal transport      Si/Gesuperlattics      molecular dynamics (MD)     
Corresponding Author(s): Yuwen ZHANG   
Online First Date: 09 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Pengfei JI,Yiming RONG,Yuwen ZHANG, et al. Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices[J]. Front. Energy, 2018, 12(1): 137-142.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0532-8
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/137
Fig.1  Schematic view of the modeled system
Cases Material Thermal conductivity/(W?m–1 ?K–1)
Case 1 Pure Si 40.2
Case 2 Pure Ge 25.3
Case 3 Si/Ge (even interface) 9.9
Case 4 Si/Ge (convergent interface) 8.4
Case 5 Si/Ge (divergent interface) 6.3
Case 6 Si/Ge (decreasing aperiodicity) 9.6
Case 7 Si/Ge (increasing aperiodicity) 9.7
Case 8 Si/Ge (random aperiodicity 1) 9.7
Case 9 Si/Ge (random aperiodicity 2) 9.4
Tab.1  Calculated thermal conductivities
Fig.2  Distribution of temperature
Fig.3  Temporal evolution of heat flux for the nine cases in Table 1
J Heat flux/(W?m–2)
k Thermal conductivity/(W?m–1?K–1)
L Length/m
S Seebeck coefficient/(V?K–1)
t Time/s
T Temperature/K
V Volume/m3
ZT Figure of merit
σ Electrical conductivity/(S?m–1)
  
1 Chen X, Wang Z, Ma Y. Atomistic design of high thermoelectricity on Si/Ge superlattice nanowires. Journal of Physical Chemistry, 2011, 115(42): 20696–20702
https://doi.org/10.1021/jp2060014
2 Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chemistry, 2011, 3(2): 160–166
https://doi.org/10.1038/nchem.955 pmid: 21258390
3 Zhao L D, Hao S, Lo S H, Wu C I, Zhou X, Lee Y, Li H, Biswas K, Hogan T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. Journal of the American Chemical Society, 2013, 135(19): 7364–7370
https://doi.org/10.1021/ja403134b pmid: 23647245
4 Mu X, Wang L, Yang X, Zhang P, To A C, Luo T. Ultra-low thermal conductivity in Si/Ge hierarchical superlattice nanowire. Scientific Reports, 2015, 5(1): 16697
https://doi.org/10.1038/srep16697 pmid: 26568511
5 Qiu B, Chen G, Tian Z. Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(4): 272–278
https://doi.org/10.1080/15567265.2015.1102186
6 Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19
https://doi.org/10.1006/jcph.1995.1039
7 Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B, Condensed Matter, 1989, 39(8): 5566–5568
https://doi.org/10.1103/PhysRevB.39.5566 pmid: 9948964
8 Ji P, Zhang Y, Yang M. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: a car-parrinello molecular dynamics study. Journal of Applied Physics, 2013, 114(23): 234905
https://doi.org/10.1063/1.4850935
9 Feng X L, Li Z X, Guo Z Y. Molecular dynamics simulation of thermal conductivity of nanoscale thin silicion films. Nanoscale and Microscale Thermophysical Engineering, 2003, 7(2): 153–161
https://doi.org/10.1080/10893950390203332
10 Wang Z, Li Z. Research on the out-of-plane thermal conductivity of nanometer silicon film. Thin Solid Films, 2006, 515(4): 2203–2206
https://doi.org/10.1016/j.tsf.2006.03.018
11 Ju Y S, Goodson K E. Phonon scattering in silicon films with thickness of order 100 nm. Applied Physics Letters, 1999, 74(20): 3005–3007
https://doi.org/10.1063/1.123994
12 Luo T, Lloyd J R. Ab initio molecular dynamics study of nanoscale thermal energy transport. Journal of Heat Transfer, 2008, 130(12): 122403
https://doi.org/10.1115/1.2976562
13 Ji P, Zhang Y. First-principles molecular dynamics investigation of the atomic-scale energy transport: from heat conduction to thermal radiation. International Journal of Heat and Mass Transfer, 2013, 60(1): 69–80
https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.051
14 Hu M, Poulikakos D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Letters, 2012, 12(11): 5487–5494
https://doi.org/10.1021/nl301971k pmid: 23106449
15 Huis in't Veld B, Overmeyer L, Schmidt M,Wegener K, Malshe A, Bartolo P. Si/Ge micro additive manufacturing using ultra short laser pulses. CIRP Annals—Manufacturing Technology, 2015, 64: 701–724
[1] Kai-Xuan CHEN, Min-Shan LI, Dong-Chuan MO, Shu-Shen LYU. Nanostructural thermoelectric materials and their performance[J]. Front. Energy, 2018, 12(1): 97-108.
[2] Guangzhao QIN, Ming HU. Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies[J]. Front. Energy, 2018, 12(1): 87-96.
[3] Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG. Developments in semiconductor thermoelectric materials[J]. Front Energ, 2011, 5(2): 125-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed