Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2021, Vol. 15 Issue (1) : 240-255    https://doi.org/10.1007/s11708-018-0514-x
RESEARCH ARTICLE
Optimal placement of wind turbines within a wind farm considering multi-directional wind speed using two-stage genetic algorithm
A.S.O. OGUNJUYIGBE, T.R. AYODELE(), O.D. BAMGBOJE
Power Energy Machines and Drives (PEMD) Research Group, Department of Electrical and Electronic Engineering, University of Ibadan, Nigeria
 Download: PDF(1257 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most wind turbines within wind farms are set up to face a pre-determined wind direction. However, wind directions are intermittent in nature, leading to less electricity production capacity. This paper proposes an algorithm to solve the wind farm layout optimization problem considering multi-angular (MA) wind direction with the aim of maximizing the total power generated on wind farms and minimizing the cost of installation. A two-stage genetic algorithm (GA) equipped with complementary sampling and uniform crossover is used to evolve a MA layout that will yield optimal output regardless of the wind direction. In the first stage, the optimal wind turbine layouts for 8 different major wind directions were determined while the second stage allows each of the previously determined layouts to compete and inter-breed so as to evolve an optimal MA wind farm layout. The proposed MA wind farm layout is thereafter compared to other layouts whose turbines have focused site specific wind turbine orientation. The results reveal that the proposed wind farm layout improves wind power production capacity with minimum cost of installation compared to the layouts with site specific wind turbine layouts. This paper will find application at the planning stage of wind farm.

Keywords optimal placement      wind turbines      wind direction      genetic algorithm      wake effect     
Corresponding Author(s): T.R. AYODELE   
Online First Date: 19 June 2018    Issue Date: 19 March 2021
 Cite this article:   
A.S.O. OGUNJUYIGBE,T.R. AYODELE,O.D. BAMGBOJE. Optimal placement of wind turbines within a wind farm considering multi-directional wind speed using two-stage genetic algorithm[J]. Front. Energy, 2021, 15(1): 240-255.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0514-x
https://academic.hep.com.cn/fie/EN/Y2021/V15/I1/240
Fig.1  100 square cell subdivided wind farm and wind directions
Fig.2  Wake from a single wind turbine
Fig.3  Rate of change of cost with number of turbines (N)
Fig.4  Wind turbine power curve for Vestas V63
Fig.5  Flowchart of stage 1 optimization
x Chromosomes Px i=1x Pi
1 11010101011010110111011110100001011110110100010110 0.09524 0.09524
2 01111101011110101001001111100100101111101101000110 0.09048 0.18571
3 00100011101011010010111111000110100010101011101000 0.08571 0.27143
4 00001011110100100000101110011001011110011010011000 0.08095 0.35238
5 11010101101011110110011100001110010100001001001101 0.07619 0.42857
6 11011011001110111110001010110101111101110111000010 0.07143 0.50000
7 11000011001101111001100010001110001000100110101010 0.06667 0.56667
8 10100001111001000100110101100101000000010110010011 0.06190 0.62857
9 11101010010010010011010111010111011101101101111001 0.05714 0.68571
10 11000011101000000011100111011000011101001001001100 0.05238 0.73810
11 11101110110010000101000011001100101001001101110001 0.04762 0.78571
12 10010111010110101010101111110110101000001001000011 0.04286 0.82857
13 01111100010000100010010001111010100001110101101011 0.03810 0.86667
14 01011110000111100011101001100011100111111001001010 0.03333 0.90000
15 11100000000001110111111000001011001001110111100110 0.02857 0.92857
16 10111110101011111001000100101101011010101010111000 0.02381 0.95238
17 00111110001010001010010001001010011000100110100001 0.01905 0.97143
18 10111100011000110111111010011110110000111100110011 0.01429 0.98571
19 11001011001011110010011101101111010000001010110111 0.00952 0.99524
20 00011011111001101001000000011010001001111100010100 0.00476 1.00000
Tab.1  Rank weighting
Individual Chromosome
Parent1 10100001111001000100110101100101000000010110010011
Parent2 11101010010010010011010111010111011101101101111001
Mask 11000011101000000011100111011000011101001001001100
Offspring1 11100010010001000111010111110101011101011111011011
Offspring2 10101001111010010000110101000111000000100100110001
Tab.2  Uniform crossover
Fig.6  Flowchart of stage 2 optimization
Fig.7  Unidirectional layout for eastern wind
Fig.8  Power per turbine for Eastern layout
Parameters Result
Fitness value 0.00153693
Total power/(kW·a−1) 14710
Number of turbines 31
Efficiency 91.051
Convergence generation 1010
Tab.3  Optimization result
Fig.9  Optimized MA layout
Fig.10  MA power curve
Quantity MA layout Veer off (south direction instead of SW) Wind follows predetermined direction (SW) Difference between MA and veer off direction/% Difference between MA and SW/%
Fitness value 0.0014207 0.0018868 0.0013937 24.70↓ 1.94↑
Cost 26.3601 27.4905 27.4905 4.11↓ 4.11↓
Power/(kW?a–1) 18554 14570 19725 27.34↑ 5.94↓
Efficiency/% 93.69 69.89 94.62 34.05↑ 0.98↓
Tab.4  Comparison of MA layout to a layout in which the wind follows a pre-determined direction (SW) and a layout in which the wind veer off the predetermined direction (South instead of SW)
Fig.11  Comparison between MA layout and unidirectional Southern layout
Fig.12  Comparison between MA layout and unidirectional Eastern layout
Fig.13  Comparison between MA layout and unidirectional Western layout
Fig.14  Comparison between MA layout and unidirectional Northern layout
Fig.15  Power sensitivity
Fig.16  Sensitivity analysis of cost per unit power of some selected wind turbines
1 T R Ayodele, A S O Ogunjuyigbe. Increasing household solar energy penetration through load partitioning based on quality of life: the case study of Nigeria. Sustainable Cities and Society, 2015, 18: 21–31
https://doi.org/10.1016/j.scs.2015.05.005
2 T R Ayodele, A A Jimoh, J L Munda, J T Agee. Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa. International Journal of Sustainable Energy, 2014, 33(2): 284–303
https://doi.org/10.1080/14786451.2012.762777
3 T R Ayodele, A S O Ogunjuyigbe. Wind energy potential of vesleskarvet and the feasibility of meeting the South African’s SANAE IV energy demand. Renewable & Sustainable Energy Reviews, 2016, 56: 226–234
https://doi.org/10.1016/j.rser.2015.11.053
4 R C Bansal, T S Bhatti, D P Kothari. On some of the design aspects of wind energy conversion systems. Energy Conversion and Management, 2002, 43(16): 2175–2187
https://doi.org/10.1016/S0196-8904(01)00166-2
5 M Patel. Wind and Power Solar Systems. Boca Raton: CRC Press, 1999
6 I Ammara, C Leclerc, C Masson. A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. Solar Energy Engineering, 2002, 124(4): 345–356
https://doi.org/10.1115/1.1510870
7 C M Ituarte-Villareal, J F Espiritu. Optimization of wind turbine placement using a viral based optimization algorithm. Procedia Computer Science, 2011, 6: 469–474
https://doi.org/10.1016/j.procs.2011.08.087
8 J Wang, X Li, X Zhang. Genetic optimal micrositing of wind farms by equilateral-triangle mesh. In: Wind Turbines. London: InTech, 2011
9 G Marmidis, S Lazarou, E Pyrgioti. Optimal placement of wind turbines in a wind park using monte carlo simulation. Renewable Energy, 2008, 33(7): 1455–1460
https://doi.org/10.1016/j.renene.2007.09.004
10 M Tabassum, K Mathew. A genetic algorithm analysis towards optimization solutions. International Journal of Digital Information and Wireless Communications, 2014, 4(1): 124–142
11 G Mosetti, C Poloni, B Diviacco. Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(1): 105–116
https://doi.org/10.1016/0167-6105(94)90080-9
12 S A Grady, M Y Hussaini, M M Abdullah. Placement of wind turbines using genetic algorithms. Renewable Energy, 2005, 30(2): 259–270
https://doi.org/10.1016/j.renene.2004.05.007
13 P Mittal, K Kulkarni, K Mitra. A novel hybrid optimization methodology to optimize the total number and placement of wind turbines. Renewable Energy, 2016, 86: 133–147
https://doi.org/10.1016/j.renene.2015.07.100
14 J Serrano González, M Burgos Payán, J M R Santos, F González-Longatt. A review and recent developments in the optimal wind-turbine micro-siting problem. Renewable & Sustainable Energy Reviews, 2014, 30(2): 133–144
https://doi.org/10.1016/j.rser.2013.09.027
15 N G Mortensen. The wind atlas analysis and application program. Mutation Research/environmental Mutagenesis & Related Subjects, 1996, 2(3): 348–349
16 J F Herbert-Acero, O Probst, P E Réthoré, G C Larsen, K K Castillo-Villar. A review of methodological approaches for the design and optimization of wind farms. Energies, 2014, 7(11): 6930–7016
https://doi.org/10.3390/en7116930
17 R Shakoor, M Y Hassan, A Raheem, Y K Wu. Wake effect modeling: a review of wind farm layout optimization using Jensen’s model. Renewable & Sustainable Energy Reviews, 2016, 58: 1048–1059
https://doi.org/10.1016/j.rser.2015.12.229
18 I Katic, J Hojstrup, N O Jensen. A simple model for cluster efficiency. In: European Wind Energy Conference (EWEC’86), Rome, 1986, 407–410
19 F González-Longatt, P P Wall, V Terzija. Wake effect in wind farm performance: steady-state and dynamic behavior. Renewable Energy, 2012, 39(1): 329–338
https://doi.org/10.1016/j.renene.2011.08.053
20 A S O Ogunjuyigbe, T R Ayodele, O D Bamgboje, A A Jimoh. Optimal placement of wind turbines within a wind farm using genetic algorithm. In: the International Renewable Energy Congress, Hammamet, Tunisia, 2016, 1–6
21 A Emami, P Noghreh. New approach on optimization in placement of wind turbines within wind farm by genetic algorithm. Renewable Energy, 2010, 35(7): 1559–1564
https://doi.org/10.1016/j.renene.2009.11.026
22 G Marmidis, S Lazarou, E Pyrgioti. Optimal placement of wind turbines in a wind park using monte carlo simulation. Renewable Energy, 2008, 33(7): 1455–1460
https://doi.org/10.1016/j.renene.2007.09.004
23 R L Haupt, S E Haupt. Practical Genetic Algorithm, 2nd ed. New Jersey: John Wiley & Sons, Inc., 2004
[1] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[2] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[3] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[4] Saeed VAFAEI,Alireza REZVANI,Majid GANDOMKAR,Maziar IZADBAKHSH. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances[J]. Front. Energy, 2015, 9(3): 322-334.
[5] Ramin ROSHANDEL,Majid ASTANEH,Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
[6] Mimoun YOUNES,Khodja FOUAD,Belabbes BAGDAD. A new technique for solving the multi-objective optimization problem using hybrid approach[J]. Front. Energy, 2014, 8(4): 490-503.
[7] Chang CHEN,Danmei XIE,Yangheng XIONG,Hengliang ZHANG. Optimization of turbine cold-end system based on BP neural network and genetic algorithm[J]. Front. Energy, 2014, 8(4): 459-463.
[8] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[9] Trina SOM, Niladri CHAKRABORTY. Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm[J]. Front Energ, 2012, 6(1): 12-20.
[10] Y. G. LI, P. PILIDIS, . Nonlinear design-point performance adaptation approaches and their comparisons for gas turbine applications[J]. Front. Energy, 2009, 3(4): 446-455.
[11] SHU Xinwei, GU Chuangang, XIAO Jun, GAO Chuang. Centrifugal compressor blade optimization based on uniform design and genetic algorithms[J]. Front. Energy, 2008, 2(4): 453-456.
[12] ZHAO Honglei, WANG Songtao, HAN Wanjin, FENG Guotai. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine[J]. Front. Energy, 2008, 2(1): 93-98.
[13] HUANG Haozhong, SU Wanhua. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model[J]. Front. Energy, 2008, 2(1): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed