Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 109-120    https://doi.org/10.1007/s11708-018-0540-8
RESEARCH ARTICLE
System-level Pareto frontiers for on-chip thermoelectric coolers
Sevket U. YURUKER1, Michael C. FISH1, Zhi YANG1, Nicholas BALDASARO2, Philip BARLETTA3, Avram BAR-COHEN1(), Bao YANG1()
1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
2. Research Triangle Institute, Research Triangle Park, NC 27709, USA
3. Micross Components, Research Triangle Park, NC 27709, USA
 Download: PDF(669 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The continuous rise in heat dissipation of integrated circuits necessitates advanced thermal solutions to ensure system reliability and efficiency. Thermoelectric coolers are among the most promising techniques for dealing with localized on-chip hot spots. This study focuses on establishing a holistic optimization methodology for such thermoelectric coolers, in which a thermoelectric element’s thickness and the electrical current are optimized to minimize source temperature with respect to ambient, when the thermal and electrical parasitic effects are considered. It is found that when element thickness and electrical current are optimized for a given system architecture, a “heat flux vs. temperature difference” Pareto frontier curve is obtained, indicating that there is an optimum thickness and a corresponding optimum current that maximize the achievable temperature reduction while removing a particular heat flux. This methodology also provides the possible system level ΔT’s that can be achieved for a range of heat fluxes, defining the upper limits of thermoelectric cooling for that architecture. In this study, use was made of an extensive analytical model, which was verified using commercially available finite element analysis software. Through the optimization process, 3 pairs of master curves were generated, which were then used to compose the Pareto frontier for any given system architecture. Finally, a case study was performed to provide an in-depth demonstration of the optimization procedure for an example application.

Keywords thermoelectric cooling      thermal management      optimization      high flux electronics     
Corresponding Author(s): Avram BAR-COHEN,Bao YANG   
Just Accepted Date: 03 January 2018   Online First Date: 08 February 2018    Issue Date: 08 March 2018
 Cite this article:   
Sevket U. YURUKER,Michael C. FISH,Zhi YANG, et al. System-level Pareto frontiers for on-chip thermoelectric coolers[J]. Front. Energy, 2018, 12(1): 109-120.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0540-8
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/109
Fig.1  Schematic of (a) element level temperature difference ΔTe; (b) system level temperature difference ΔTsys in a typical thermoelectric cooling system architecture
Fig.2  (a) Heat pumped vs system level ΔTsys curves for different TE thicknesses and (b) the corresponding frontier curves for a given system level architecture that sums up to a structural resistance Rstr = 20 K/W, obtained using the revised TE equations (Eqs. (8)–(11))
Fig.3  Discrepancy between element level ΔTe and system level ΔTsys due to structural thermal parasitics for an example module with 100 µm thick TE element
Fig.4  Percentage breakdown of electrical resistances for (a) thin film TEC and (b) bulk TEC, when the Cu trace thickness is 50 µm and the electrical contact resistance is ECR= 1 × 1010 W·m2, which reflect today’s capabilities [7,17]
Fig.5  Effect of electrical contact resistance on achievable heat fluxes when Δt = 0 (For comparison with the following sections of the paper, the corresponding “areal” resistance for the Rstr = 0.1 K/W curve is Rstr,areal = 1.23 × 104 cm2·K/W)
Fig.6  Cu trace thickness optimization
Fig.7  (a) Unit cell based, numerical model geometry; (b) dimensions and material properties of the system; (c) thermal resistance network of the system
Fig.8  Analytical model results comparison with numerical results obtained via ANSYS
Fig.9  Analytical model results comparison with experimental results obtained by Bulman et al. [7]
Fig.10  Master curves of QT for various structural resistances at (a) Tsink = 300 K, and (b) Tsink = 400 K
Fig.11  Master curves of optimized TE element thicknesses for various structural resistances at (a) Tsink = 300 K, and (b) Tsink = 400 K
Fig.12  Master curves of optimal current densities for various structural resistances at (a) Tsink = 300 K, and (b) Tsink = 400 K
Layers Thermal conductivity/(W·m–1·K–1) Thickness/µm
Aluminum heatsink base 180 500
Aluminum nitride headers 250 200
Silicon substrate 150 100
Copper traces 400 50
Tin solders (within TEC module) 67 25
Tin solders (outside of TEC module) 67 10
Tab.1  Dimensions and assumed thermal conductivities for the case study model
Fig.13  The 3D model of the system built in Ansys-Workbench
Fig.14  (a) Pareto frontier; (b) optimal values of the variables obtained using three different methods; the master curves, analytical optimization and simulation
A Area/m2
COP Coefficient of performance
HTC Heat transfer coefficient/(W·m–2·K–1)
I Electrical current/A
k Thermal conductivity of TE element/(W·m–1·K–1)
K Conductance of the TE element/(W·K–1)
L Thickness of the TE element/m
N Number of elements within the thermoelectric module
Q Net heat pumped at the specified junction/W
Qs Heat flow from the source per TE element/W
q Heat flux/(W·cm–2)
Rsource Sum of source side structural resistances per TE element/(K·W –1)
Rsink Sum of sink side structural resistances per TE element/(K·W–1)
Rstr,areal Area based version of the structural resistance/(cm2·K·W–1)
RTE Electrical resistance of TE element/W
S Seebeck coefficient per TE element/(V·K–1)
T Temperature/K
TE Thermoelectric element
TEC Thermoelectric cooler
Tsource Source temperature/K
Tsink Sink (fluid) temperature/K
Greek symbols
Δ Difference in temperature/K
γ Ratio of sink side resistance to total structural resistance
ρ Electrical resistivity of TE element/(W·m)
ρECR Electrical contact resistivity/(W·m2)
Subscripts
c Cold junction of the TE element
e Element-level
ECR Electrical contact resistance
eff Effective
elec Electrical
h Hot junction of the TE element
opt Optimum value for the variable
s Source
spr Spreading
str Structural
sys System-level
TE Thermoelectric element
Trace Electrical resistance of the Cu trace
  
1 Yang B, Wang  P. Thermoelectric microcoolers. In: Bar-Cohen A ed. Encyclopedia of Thermal Packaging. Singapore: World Scientific Publishing Company, 2012
2 Tan G, Zhao  D. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24 
https://doi.org/ 10.1016/j.applthermaleng.2014.01.074
3 Simons R E, Chu  R C. Applications of thermoelectric cooling to electronic equipment: a review and analysis. In: Proceedings of the 16th IEEE Semi-Therm Symposium, 2000, 1–9
4 Yang B, Wang  P, Bar-Cohen A. Thermoelectric mini-contact cooler for hot-spot removal in high power devices. Proceedings of the 56th Electronic Components and Technology Conference, 2006, 1–6
5 Wang P, Yang  B, Bar-Cohen A. Mini-contact enhanced thermoelectric coolers for on chip hot spot cooling. Heat Transfer Engineering, 2009, 30(9): 736–743
https://doi.org/10.1080/01457630802678391
6 Yuruker S U, Bae  D, Mandel R K,  Yang B, McCluskey  P, Bar-Cohen A,  Ohadi M. Integration of micro-contact enhanced thermoelectric cooler with a feeds manifold-microchannel system for cooling of high flux electronics. Proceedings of the16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2017, 711–718
7 Bulman G, Barletta  P, Lewis J,  Baldasaro N,  Manno M,  Bar-Cohen A,  Yang B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7: 10302
https://doi.org/10.1038/ncomms10302 pmid: 26757675
8 Snyder G J, Soto  M, Alley R,  Koester D,  Conner B. Hot spot cooling using embedded thermoelectric coolers. 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2006, 135–143
9 Ranjan R, Turney  J E, Lents  C E. Design of high packing fraction thermoelectric modules for high heat flux cooling. ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, 2013, IPACK2013-73073 
https://doi.org/10.1115/IPACK2013-73073
10 Chowdhury I, Prasher  R, Lofgreen K,  Chrysler G,  Narasimhan S,  Mahajan R,  Koester D,  Alley R,  Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238
https://doi.org/10.1038/nnano.2008.417 pmid: 19350033
11 Gupta M P, Sayer  M H, Mukhopadhyay  S, Kumar S. Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2011, 1(9): 1395–1405
https://doi.org/10.1109/TCPMT.2011.2159304
12 Fraisse G, Lazard  M, Goupil C,  Serrat J Y. Study of a thermoelement’s behaviour through a modelling based on electrical analogy. International Journal of Heat and Mass Transfer, 2010, 53(17–18): 3503–3512
https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.011
13 Alam H, Ramakrishna  S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy, 2013, 2(2): 190–212
https://doi.org/10.1016/j.nanoen.2012.10.005
14 Solbrekken G L,  Yazawa K,  Bar-Cohen A. Chip level refrigeration of portable electronic equipment using thermoelectric devices. In: Proceedings of InterPack’03. Maui, USA, 2003
15 Taylor R A, Solbrekken  G L. Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications. IEEE Transactions on Components and Packaging Technologies, 2008, 31(1): 23–31
https://doi.org/10.1109/TCAPT.2007.906333
16 Yamashita O, Ochi  T, Odahara H. Effect of the cooling rate on the thermoelectric properties of p-type (Bi0.25Sb0.75)2Te3 and n-type Bi2(Te0.94Se0.06)3 after melting in the bismuth–telluride system. Materials Research Bulletin, 2009, 44(6): 1352–1359
https://doi.org/10.1016/j.materresbull.2008.12.004
17 Kim Y, Yoon  G, Park S. Direct contact resistance evaluation of thermoelectric legs. Experimental Mechanics, 2016, 56(5): 861–869
https://doi.org/10.1007/s11340-016-0131-8
18 Sharar D, Jankowski  N R, Morgan  B. Review of two-phase electronics cooling for army vehicle applications. ARL-TR-5323. 2010
19 Bar-Cohen A, Arik  M, Ohadi M. Direct liquid cooling of high flux micro and nano electronic components. Proceedings of the IEEE, 2006, 94(8): 1549–1570
https://doi.org/10.1109/JPROC.2006.879791
20 Lee J, Mudawar  I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics. International Journal of Heat and Mass Transfer, 2005, 48(5): 941–955
https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.019
21 Lee J, Mudawar  I. Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics. IEEE Transactions on Components and Packaging Technologies, 2009, 32(2): 453–465
https://doi.org/10.1109/TCAPT.2008.200578322.
22 Agostini B, Fabbri  M, Park J E,  Wojtan L,  Thome J R,  Michel B. State of the art of high heat flux cooling technologies. Heat Transfer Engineering, 2007, 28(4): 258–281
https://doi.org/10.1080/01457630601117799
23 Lee S, Song  S, Au V,  Moran K P. Constriction/spreading resistance model for electronics packaging. ASME/JSME Thermal Engineering Conference, 1995, 4: 199–206
24 Atarashi T, Tanaka  T, Tsubaki S,  Hirasawa S. Calculation method for forced-air convection cooling heat transfer coefficient of multiple rows of memory cards. Journal of Electronics Cooling and Thermal Control, 2014, 4(3): 70–77
https://doi.org/10.4236/jectc.2014.43008
[1] Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm[J]. Front. Energy, 2020, 14(3): 649-665.
[2] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[3] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[4] Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE. Distributionally robust optimization of home energy management system based on receding horizon optimization[J]. Front. Energy, 2020, 14(2): 254-266.
[5] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[6] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[7] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[8] Chongzhe ZOU, Huayi FENG, Yanping ZHANG, Quentin FALCOZ, Cheng ZHANG, Wei GAO. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Front. Energy, 2019, 13(2): 284-295.
[9] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[10] Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG. Decoupling optimization of integrated energy system based on energy quality character[J]. Front. Energy, 2018, 12(4): 540-549.
[11] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[12] Huayi ZHANG, Can ZHANG, Fushuan WEN, Yan XU. A comprehensive energy solution for households employing a micro combined cooling, heating and power generation system[J]. Front. Energy, 2018, 12(4): 582-590.
[13] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[14] Lanz UY, Patric UY, Jhoenson SIY, Anthony Shun Fung CHIU, Charlle SY. Target-oriented robust optimization of a microgrid system investment model[J]. Front. Energy, 2018, 12(3): 440-455.
[15] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed