Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (6) : 973-987    https://doi.org/10.1007/s11708-021-0762-z
RESEARCH ARTICLE
Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV
Haoran ZHAO, Jinhua WANG(), Xiao CAI, Zhijian BIAN, Hongchao DAI, Zuohua HUANG()
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(4271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A fan-stirred combustion chamber is deve-loped for spherically expanding flames, with P and T up to 10 bar and 473 K, respectively. Turbulence characteristics are estimated using particle image velocimetry (PIV) at different initial pressures (P = 0.5–5 bar), fan frequencies (ω = 0–2000 r/min), and impeller diameters (D = 100 and 114 mm). The flame propagation of methanol/air is investigated at different turbulence intensities (u′=0–1.77 m/s) and equivalence ratios (φ = 0.7–1.5). The results show that u′ is independent of P and proportional to ω, which can be up to 3.5 m/s at 2000 r/min. LT is independent of P and performs a power regression with ω approximately. The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to –5/3 law at a high ReT. Compared to laminar expanding flames, the morpho-logy of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity, consistent with the decline of the Taylor scale and the Kolmogorov scale. The determined SL in the present study is in good agreement with that of previous literature. The SL and ST of methanol/air have a non-monotonic trend with φ while peak ST is shifted to the richer side compared to SL. This indicates that the newly built turbulent combustion chamber is reliable for further experimental study.

Keywords fan-stirred combustion chamber      turbulence characteristics      particle image velocimetry (PIV)      methanol      turbulent expanding flames     
Corresponding Author(s): Jinhua WANG,Zuohua HUANG   
Online First Date: 02 August 2021    Issue Date: 17 January 2023
 Cite this article:   
Haoran ZHAO,Jinhua WANG,Xiao CAI, et al. Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV[J]. Front. Energy, 2022, 16(6): 973-987.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-021-0762-z
https://academic.hep.com.cn/fie/EN/Y2022/V16/I6/973
Reference [18] [19] [20] [12] [8] [21] [13] [16] [14] [10] [17] [22] [15]
Chamber shape Cylindrical Cylindrical Intersection of two cylinders Equivalent sphere Spherical Equivalent sphere Equivalent sphere Cylindrical Spherical Intersection of three cylinders Cylindrical Spherical Cubic
Chamber size/mm ID= 305
IL= 305
ID= 260
IL= 260
Cubic volume of 150*150*150 ID= 58 ID= 380 ID= 406 ID= 118
IL= 118
ID= 305
IL= 356
ID= 200 ID= 101 ID= 114
IL= 127
ID= 563 IL= 136
No. optical ports 2 2 4 3 2 4 2 4 2 4 6
No. of fans 4 4 2 4 4 2 8 4 6 2 4 8 2
Fans diameter/mm 147 135 116 48 45 76.2 40 25.4 69 - 100
Maximum fan frequency/(r·min–1) 10000 2500 7620 7000 10000 10000 8300 15000 8000 4000 5000 2900
Maximum turbulence intensity/(m·s–1) 16 ~2.2 2.6 1.8 12 1.59 ~3.5 3.5 2.8 ~2.3 4 1.6
Integral length scale/mm 3842 40 1548 6.9 20 10.3 3.9 2027 3.4 4552 4.655.48
Diagnostic techniques LDV LDV LDV PIV LDV PIV LDV (u’)
PIV (LT)
PIV LDV (u’)
PIV (LT)
PIV PIV PIV PIV
Tab.1  An overview of turbulence characterization in fan-stirred combustion chamber
Fig.1  Schematics of the experimental apparatus.
Impeller size/mm P/bar Τ/K ω/(r·min–1)
Large (114) 0.5 298 500, 1000, 1500, 2000
1
2
5
Small (100) 1 298 500, 1000, 1500, 2000
2
5
Tab.2  Experimental conditions of turbulence characterization
Mixture P/bar T/K φ ω/(r·min–1)
Methanol/Air 1 353 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 0, 500, 1000
Tab.3  Experimental conditions of methanol/air turbulent expanding flames
Fig.2  Maps of mean velocity field and turbulence intensity field.
Impeller size/mm P/bar ω/(r·min–1) u′/(m·s–1)
Large (114) 0.5 500, 1000, 1500, 2000 0.95, 1.73, 2.65, 3.44
1 500, 1000, 1500, 2000 1.08, 1.80, 2.64, 3.48
2 500, 1000, 1500, 2000 1.25, 1.95, 2.90, 3.54
5 500, 1000, 1500, 2000 1.21,–, 2.48, 3.40
Small (100) 1 500, 1000, 1500, 2000 1.22, 1.73, 2.42, 3.32
2 500, 1000, 1500, 2000 –, 1.86, 2.59, 3.54
5 500, 1000, 1500, 2000 1.21, 1.75, 2.50, 3.38
Tab.4  Results of turbulence intensity
Fig.3  Turbulence intensity under different conditions.
Fig.4  Correlation coefficients of fluctuating velocities in the baseline condition.
Fig.5  Integral length scale under different conditions.
Fig.6  Taylor and Kolmogorov length scales.
Fig.7  Maps of homogeneity and isotropy ratios.
Fig.8  Histograms and CDFs of homogeneity and isotropy.
Fig.9  Spatial energy spectrum at different Reynolds numbers.
Fig.10  Shadow pictures of methanol/air flames.
Fig.11  Flame propagation velocity of methanol/air mixtures.
Fig.12  Burning velocity of methanol/air expanding flames.
1 H Kobayashi, Y Kawabata, K Maruta. Experimental study on general correlation of turbulent burning velocity at high pressure. Symposium (International) on Combustion, 1998, 27: 941–948
https://doi.org/10.1016/S0082-0784(98)80492-X
2 J Wang, F Matsuno, M Okuyama, et al.. Flame front characteristics of turbulent premixed flames diluted with CO2 and H2O at high pressure and high temperature. Proceedings of the Combustion Institute, 2013, 34(1): 1429–1436
https://doi.org/10.1016/j.proci.2012.06.154
3 Y Nie, J Wang, W Zhang, et al.. Flame brush thickness of lean turbulent premixed Bunsen flame and the memory effect on its development. Fuel, 2019, 242: 607–616
https://doi.org/10.1016/j.fuel.2019.01.088
4 M Kejin, W Yue, L Yu, et al.. Observation of premixed flame fronts by laser tomography. Frontiers of Energy and Power Engineering in China, 2008 2: 427–432
https://doi.org/10.1007/s11708-008-0069-3
5 R Yan, Z Chen, S Guan, et al.. Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized coal boiler. Frontiers in Energy, 2021, 15(1): 68–77
https://doi.org/10.1007/s11708-020-0697-9
6 A S Sokolik, V P Karpov, E S Semenov. Turbulent combustion of gases. Combustion, Explosion, and Shock Waves, 1967, 3: 36–45
https://doi.org/10.1007/BF00741609
7 V P Karpov, E S Severin. Effects of molecular-transport coefficients on the rate of turbulent combustion. Combustion, Explosion, and Shock Waves, 1980, 16(1): 41–46
https://doi.org/10.1007/BF00756242
8 D Bradley, M Z Haq, R A Hicks, et al.. Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combustion and Flame, 2003, 133(4): 415–430
https://doi.org/10.1016/S0010-2180(03)00039-7
9 Z Huang, J Wang, E J Hu, et al.. Progress in hydrogen enriched hydrocarbons combustion and engine applications. Frontiers in Energy, 2014, 8(1): 73–80
https://doi.org/10.1007/s11708-013-0287-1
10 H Ge, M Norconk, S Lee, et al.. PIV measurement and numerical simulation of fan-driven flow in a constant volume combustion vessel. Applied Thermal Engineering, 2014, 64(1–2): 19–31
https://doi.org/10.1016/j.applthermaleng.2013.11.073
11 O A Mannaa, M S Mansour, S H Chung, et al.. Characterization of turbulence in an optically accessible fan-stirred spherical combustion chamber. Combustion Science and Technology, 2021, 193(7): 1231–1257
https://doi.org/10.1080/00102202.2019.1686629
12 V Sick, M R Hartman, V S Arpaci, et al.. Turbulent scales in a fan-stirred combustion bomb. Combustion and Flame, 2001, 127(3): 2119–2123
https://doi.org/10.1016/S0010-2180(01)00314-5
13 M Weiß, N Zarzalis, R Suntz. Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combustion and Flame, 2008, 154(4): 671–691
https://doi.org/10.1016/j.combustflame.2008.06.011
14 B Galmiche, N Mazellier, F Halter, et al.. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements. Experiments in Fluids, 2014, 55(1): 1636
https://doi.org/10.1007/s00348-013-1636-x
15 S Xu, S Huang, R Huang, et al.. Estimation of turbulence characteristics from PIV in a high-pressure fan-stirred constant volume combustion chamber. Applied Thermal Engineering, 2017, 110: 346–355
https://doi.org/10.1016/j.applthermaleng.2016.08.149
16 S Ravi, S J L Peltier, E Petersen. Analysis of the impact of impeller geometry on the turbulent statistics inside a fan-stirred, cylindrical flame speed vessel using PIV. Experiments in Fluids, 2013, 54(1): 1424
https://doi.org/10.1007/s00348-012-1424-z
17 S Chaudhuri, A Saha, C K Law. On flame–turbulence interaction in constant-pressure expanding flames. Proceedings of the Combustion Institute, 2015, 35(2): 1331–1339
https://doi.org/10.1016/j.proci.2014.07.038
18 R G Abdel-Gayed, K J Alkhishali, D Bradley. Turbulent burning velocities and flame straining in explosions. Proceedings of the Royal Society of London, 1984, 391: 393–414
https://doi.org/10.1098/rspa.1984.0019
19 T D Fansler, E G Groff. Turbulence characteristics of a fan-stirred combustion vessel. Combustion and Flame, 1990, 80(3–4): 350–354
https://doi.org/10.1016/0010-2180(90)90110-D
20 S S Shy, W K i, M L Lin. A new cruciform burner and its turbulence measurements for premixed turbulent combustion study. Experimental Thermal and Fluid Science, 2000, 20(3–4): 105–114
https://doi.org/10.1016/S0894-1777(99)00035-7
21 T Kitagawa, T Nakahara, K Maruyama, et al.. Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated pressures. International Journal of Hydrogen Energy, 2008, 33(20): 5842–5849
https://doi.org/10.1016/j.ijhydene.2008.06.013
22 J Goulier, N Chaumeix, F Halter, et al.. Experimental study of laminar and turbulent flame speed of a spherical flame in a fan-stirred closed vessel for hydrogen safety application. Nuclear Engineering and Design, 2017, 312: 214–227
https://doi.org/10.1016/j.nucengdes.2016.07.007
23 Z Y Sun, G X Li. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel. Energy Conversion and Management, 2017, 149: 526–535
https://doi.org/10.1016/j.enconman.2017.07.051
24 W K Kim, T Mogi, R Dobashi. Effect of propagation behaviour of expanding spherical flames on the blast wave generated during unconfined gas explosions. Fuel, 2014, 128: 396–403
https://doi.org/10.1016/j.fuel.2014.02.062
25 C C Liu, S S Shy, M W Peng, et al.. High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers. Combustion and Flame, 2012, 159(8): 2608–2619
https://doi.org/10.1016/j.combustflame.2012.04.006
26 L J Jiang, S S Shy, W Y Li, et al.. High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames. Combustion and Flame, 2016, 172: 173–182
https://doi.org/10.1016/j.combustflame.2016.07.021
27 C W Chiu, Y C Dong, S S Shy. High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers. International Journal of Hydrogen Energy, 2012, 37(14): 10935–10946
https://doi.org/10.1016/j.ijhydene.2012.04.023
28 Z Y Sun. Explosion pressure measurement of 50%H2–50%CO synthesis gas–air mixtures in various turbulent ambience. Combustion Science and Technology, 2018, 190(6): 1007
https://doi.org/10.1080/00102202.2018.1424141
29 R Ichimura, K Hadi, N Hashimoto, et al.. Extinction limits of an ammonia/air flame propagating in a turbulent field. Fuel, 2019, 246: 178–186
https://doi.org/10.1016/j.fuel.2019.02.110
30 Y Xia, G Hashimoto, K Hadi, et al.. Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition. Fuel, 2020, 268: 117383
https://doi.org/10.1016/j.fuel.2020.117383
31 J Vancoillie, G Sharpe, M Lawes, et al.. The turbulent burning velocity of methanol–air mixtures. Fuel, 2014, 130: 76–91
https://doi.org/10.1016/j.fuel.2014.04.003
32 M Lawes, M P Ormsby, C G W Sheppard, et al.. Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure. Combustion Science and Technology, 2005, 177(7): 1273–1289
https://doi.org/10.1080/00102200590950467
33 D Bradley, M Lawes, M S Mansour. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa. Combustion and Flame, 2011, 158(1): 123–138
https://doi.org/10.1016/j.combustflame.2010.08.001
34 C Mandilas, M P Ormsby, C G W Sheppard, et al.. Effects of hydrogen addition on laminar and turbulent premixed methane and iso-octane–air flames. Proceedings of the Combustion Institute, 2007, 31(1): 1443–1450
https://doi.org/10.1016/j.proci.2006.07.157
35 M Lawes, M P Ormsby, C G W Sheppard, et al.. The turbulent burning velocity of iso-octane/air mixtures. Combustion and Flame, 2012, 159(5): 1949–1959
https://doi.org/10.1016/j.combustflame.2011.12.023
36 P Brequigny, F Halter, C Mounaïm-Rousselle. Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel. Experimental Thermal and Fluid Science, 2016, 73: 33–41
https://doi.org/10.1016/j.expthermflusci.2015.08.021
37 F Liu, M Z Akram, H Wu. Hydrogen effect on lean flammability limits and burning characteristics of an iso-octane–air mixture. Fuel, 2020, 266: 117144
https://doi.org/10.1016/j.fuel.2020.117144
38 F Wu, A Saha, S Chaudhuri, et al.. Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch-affected local extinction. Proceedings of the Combustion Institute, 2015, 35(2): 1501–1508
https://doi.org/10.1016/j.proci.2014.07.070
39 W Hwang, J K Eaton. Creating homogeneous and isotropic turbulence without a mean flow. Experiments in Fluids, 2004, 36(3): 444–454
https://doi.org/10.1007/s00348-003-0742-6
40 T S Yang, S S Shy. Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. Journal of Fluid Mechanics, 2005, 526: 171–216
https://doi.org/10.1017/S0022112004002861
41 S B Pope. Turbulent Flows. Cambridge: Cambridge University Press, 2000
42 H Tennekes, J L Lumley. A First Course in Turbulence. Cambridge: MIT Press, 1972
43 P Doron, L Bertuccioli, J Katz, et al.. Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, 2001, 31(8): 2108–2134
https://doi.org/10.1175/1520-0485(2001)031<2108:TCADEI>2.0.CO;2
44 A P Kelley, C K Law. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combustion and Flame, 2009, 156(9): 1844–1851
https://doi.org/10.1016/j.combustflame.2009.04.004
45 P S Veloo, Y L Wang, F N Egolfopoulos, et al.. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combustion and Flame, 2010, 157(10): 1989–2004
https://doi.org/10.1016/j.combustflame.2010.04.001
[1] Wu YU, Gen CHEN, Zuohua HUANG. Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend[J]. Front Energ, 2011, 5(4): 412-418.
[2] Zhengjiao TANG, Cunwen WANG, Weiguo WANG, Jia GUO, Yuanxin WU, Jinfang CHEN, Yigang DING. Simulation analysis of methanol flash distillation circulation process in biodiesel production with supercritical method[J]. Front Energ, 2011, 5(1): 93-97.
[3] Xiangang WANG, Zhiyuan ZHANG, Zuohua HUANG, Xibin WANG, Haiyan MIAO, . Experimental study on premixed combustion of spherically propagating methanol-air-nitrogen flames[J]. Front. Energy, 2010, 4(2): 223-233.
[4] Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG, . Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodiesel via supercritical methanol transesterification[J]. Front. Energy, 2009, 3(4): 423-431.
[5] Minghua WANG , Zheng LI , Weidou NI , . Design and analysis of dual fuel methanol-power poly-generation[J]. Front. Energy, 2009, 3(3): 341-347.
[6] Weidou NI , Zhen CHEN , Zheng LI , Jian GAO , . How to make the production of methanol/DME &#8220;GREENER&#8221;&#8212;Integration of wind power with modern coal chemical industry&#8212;[J]. Front. Energy, 2009, 3(1): 94-98.
[7] SONG Ruizhi, LIU Shenghua, LIANG Xiaoqiang, Tiegang H U. Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start[J]. Front. Energy, 2008, 2(4): 395-400.
[8] ZOU Hongbo, WANG Lijun, LIU Shenghua, LI Yu. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel[J]. Front. Energy, 2008, 2(3): 285-290.
[9] YAO Chunde, LIU Xibo, WANG Hongfu, LIU Xiaoping, CHENG Chuanhui, WANG Yinshan. Study on emissions reduction of DMCC engine with oxidation catalyst[J]. Front. Energy, 2007, 1(4): 441-445.
[10] GE Bing, ZANG Shusheng, GU Xin. Experimental study of humid air reverse diffusion combustion in a turbulent flow field[J]. Front. Energy, 2007, 1(4): 428-434.
[11] WANG Xibin, CHEN Wansheng, GAO Jian, JIANG Deming, HUANG Zuohua. Spray characteristics of high-pressure swirl injector fueled with alcohol[J]. Front. Energy, 2007, 1(1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed