|
|
|
Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models |
Junping SHI( ) |
| Department of Mathematics, College of William and Mary, Williamsburg, VA 23185, USA School of Mathematics, Harbin Normal University, Harbin 150025, China |
|
|
|
|
Abstract Recent advances in abstract local and global bifurcation theory is briefly reviewed. Several applications are included to illustrate the applications of abstract theory, and it includes Turing instability of chemical reactions, pattern formation in water limited ecosystems, and diffusive predator-prey models.
|
| Keywords
Bifurcation
reaction-diffusion model
|
|
Corresponding Author(s):
SHI Junping,Email:shij@math.wm.edu
|
|
Issue Date: 05 September 2009
|
|
| 1 |
Ambrosetti A, Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, Vol 34 . Cambridge: Cambridge University Press, 1995
|
| 2 |
Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffusion Equation. Wiley Series in Mathematical and Computational Biology . New York: John Wiley & Sons Ltd, 2003 doi: 10.1002/0470871296
|
| 3 |
Chang K-C. Methods in Nonlinear Analysis. Springer Monographs in Mathematics . Berlin: Springer-Verlag, 2005
|
| 4 |
Cheng K S. Uniqueness of a limit cycle for a predator-prey system. SIAM J Math Anal , 1981, 12(4): 541-548 doi: 10.1137/0512047
|
| 5 |
Chow S N, Hale J K. Methods of Bifurcation Theory. New York-Berlin: Springer-Verlag, 1982
|
| 6 |
Conway E D. Diffusion and predator-prey interaction: pattern in closed systems. In: Fitzgibbon W E, ed. Partial Differential Equations and Dynamical Systems. Res Notes in Math, Vol 101 . Boston-London: Pitman, 1984, 85-133
|
| 7 |
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. Jour Func Anal , 1971, 8: 321-340 doi: 10.1016/0022-1236(71)90015-2
|
| 8 |
Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Rational Mech Anal , 1973, 52: 161-180 doi: 10.1007/BF00282325
|
| 9 |
De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D , 1991, 49: 161-169 doi: 10.1016/0167-2789(91)90204-M
|
| 10 |
Deimling K. Nonlinear Functional Analysis. Berlin-New York: Springer-Verlag, 1985
|
| 11 |
Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. In: Brunner H, Zhao X Q, Zou X F, eds. Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, 48 . Providence: American Mathematical Society, 2006, 95-135
|
| 12 |
Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. Oxford: Oxford University Press, 1998
|
| 13 |
Gray P, Scott S K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford: Clarendon Press, 1990
|
| 14 |
Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Jour Sound and Vibr , 1999, 225(5): 935-988 doi: 10.1006/jsvi.1999.2257
|
| 15 |
Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol 840 . Berlin-New York: Springer-Verlag, 1981
|
| 16 |
Hsu S-B. Ordinary Differential Equations with Applications. Series on Applied Mathematics, 16 . Hackensack: World Scientific Publishing Co Pte Ltd, 2006
|
| 17 |
Hsu S-B, Shi J P. Relaxation oscillator profile of limit cycle in predator-prey system. Disc Cont Dyns Syst-B (to appear)
|
| 18 |
Jang J, Ni W-M, Tang M X. Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. J Dynam Differential Equations , 2004, 16(2): 297-320 doi: 10.1007/s10884-004-2782-x
|
| 19 |
Jiang J F, Shi J P. Bistability dynamics in some structured ecological models. In: Spatial Ecology: A Collection of Essays . Boca Raton: CRC Press, 2009 (in press)
|
| 20 |
Kielh?fer H. Bifurcation Theory. An Introduction with Applications to PDEs. Applied Mathematical Sciences, Vol 156 . New York: Springer-Verlag,2004
|
| 21 |
Lengyel I, Epstein I R. Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system. Science , 1991, 251: 650-652 doi: 10.1126/science.251.4994.650
|
| 22 |
Lengyel I, Epstein I R. A chemical approach to designing Turing patterns in reactiondiffusion system. Proc Natl Acad Sci USA , 1992, 89: 3977-3979 doi: 10.1073/pnas.89.9.3977
|
| 23 |
Liu P, Shi J P, Wang Y W. Imperfect transcritical and pitchfork bifurcations. Jour Func Anal , 2007, 251(2): 573-600 doi: 10.1016/j.jfa.2007.06.015
|
| 24 |
López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Chapman & Hall/CRC Research Notes in Mathematics, Vol 426 . Boca Raton: Chapman & Hall/CRC, 2001
|
| 25 |
Medvinsky A B, Petrovskii S V, Tikhonova I A, Malchow H, Li B-L. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev , 2002, 44(3): 311-370 doi: 10.1137/S0036144502404442
|
| 26 |
Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals , 2004, 19: 367-376 doi: 10.1016/S0960-0779(03)00049-3
|
| 27 |
Murray J D. Mathematical Biology. I. An Introduction. 3rd Ed. Interdisciplinary Applied Mathematics, Vol 17 . New York: Springer-Verlag, 2003
|
| 28 |
Murray J D. Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Vol 18 . New York: Springer-Verlag, 2003
|
| 29 |
Ni W-M, Tang M X. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc , 2005, 357(10): 3953-3969 doi: 10.1090/S0002-9947-05-04010-9
|
| 30 |
Nirenberg L. Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, Vol 6. New York University, Courant Institute of Mathematical Sciences, New York . Providence: American Mathematical Society, 2001
|
| 31 |
Nishiura Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J Math Anal , 1982, 13(4): 555-593 doi: 10.1137/0513037
|
| 32 |
Okubo A, Levin S. Diffusion and Ecological Problems: Modern Perspectives. 2nd Ed. Interdisciplinary Applied Mathematics, Vol 14 . New York: Springer-Verlag, 2001
|
| 33 |
Pejsachowicz J, Rabier P J. Degree theory for C1 Fredholm mappings of index 0. J Anal Math , 1998, 76: 289-319 doi: 10.1007/BF02786939
|
| 34 |
Rabinowitz P H. Some global results for nonlinear eigenvalue problems. Jour Func Anal , 1971, 7: 487-513 doi: 10.1016/0022-1236(71)90030-9
|
| 35 |
Reiss E L. Column buckling—an elementary example of bifurcation. In: Keller J B, Antman S, eds. Bifurcation Theory and Nonlinear Eigenvalue Problems . New York-Amsterdam: W A Benjamin, Inc, 1969, 1-16
|
| 36 |
Reiss E L. Imperfect bifurcation. In: Applications of Bifurcation Theory (Proc Advanced Sem, Univ Wisconsin, Madison, Wis, 1976). Publ Math Res Center Univ Wisconsin, No 38 . New York: Academic Press, 1977, 37-71
|
| 37 |
Rosenzweig M L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science , 1971, 171(3969): 385-387 doi: 10.1126/science.171.3969.385
|
| 38 |
Shi J P. Persistence and bifurcation of degenerate solutions. Jour Func Anal , 1999, 169(2): 494-531 doi: 10.1006/jfan.1999.3483
|
| 39 |
Shi J P. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multiplicity. Singapore: World Scientific Publishing Co Pte Ltd, 2009
|
| 40 |
Shi J P, Wang X F. On global bifurcation for quasilinear elliptic systems on bounded domains. Jour Diff Equations , 2009, 246(7): 2788-2812 doi: 10.1016/j.jde.2008.09.009
|
| 41 |
Timosehnko S P. History of Strength of Materials. New York: Dover Publications, Inc, 1953
|
| 42 |
Turing A M. The chemical basis of morphogenesis. Philosophical Transaction of Royal Society of London , 1952, B237: 37-72 doi: 10.1098/rstb.1952.0012
|
| 43 |
von Hardenberg J, Meron E, Shachak M, Zarmi Y. Diversity of vegetation patterns and desertification. Phys Rev Lett , 2001, 87: 198101 doi: 10.1103/PhysRevLett.87.198101
|
| 44 |
Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal Real World Appl , 2008, 9(3): 1038-1051 doi: 10.1016/j.nonrwa.2007.02.005
|
| 45 |
Yi F Q, Wei J J, Shi J P. Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system. Jour Diff Equations , 2009, 246(5): 1944-1977 doi: 10.1016/j.jde.2008.10.024
|
| 46 |
Yi F Q, Wei J J, Shi J P. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. Appl Math Lett , 2009, 22(1): 52-55 doi: 10.1016/j.aml.2008.02.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|