Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 407-424    https://doi.org/10.1007/s11464-009-0026-4
SURVEY ARTICLE
Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models
Junping SHI()
Department of Mathematics, College of William and Mary, Williamsburg, VA 23185, USA School of Mathematics, Harbin Normal University, Harbin 150025, China
 Download: PDF(220 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances in abstract local and global bifurcation theory is briefly reviewed. Several applications are included to illustrate the applications of abstract theory, and it includes Turing instability of chemical reactions, pattern formation in water limited ecosystems, and diffusive predator-prey models.

Keywords Bifurcation      reaction-diffusion model     
Corresponding Author(s): SHI Junping,Email:shij@math.wm.edu   
Issue Date: 05 September 2009
 Cite this article:   
Junping SHI. Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models[J]. Front Math Chin, 2009, 4(3): 407-424.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0026-4
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/407
1 Ambrosetti A, Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, Vol 34 . Cambridge: Cambridge University Press, 1995
2 Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffusion Equation. Wiley Series in Mathematical and Computational Biology . New York: John Wiley & Sons Ltd, 2003
doi: 10.1002/0470871296
3 Chang K-C. Methods in Nonlinear Analysis. Springer Monographs in Mathematics . Berlin: Springer-Verlag, 2005
4 Cheng K S. Uniqueness of a limit cycle for a predator-prey system. SIAM J Math Anal , 1981, 12(4): 541-548
doi: 10.1137/0512047
5 Chow S N, Hale J K. Methods of Bifurcation Theory. New York-Berlin: Springer-Verlag, 1982
6 Conway E D. Diffusion and predator-prey interaction: pattern in closed systems. In: Fitzgibbon W E, ed. Partial Differential Equations and Dynamical Systems. Res Notes in Math, Vol 101 . Boston-London: Pitman, 1984, 85-133
7 Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. Jour Func Anal , 1971, 8: 321-340
doi: 10.1016/0022-1236(71)90015-2
8 Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Rational Mech Anal , 1973, 52: 161-180
doi: 10.1007/BF00282325
9 De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D , 1991, 49: 161-169
doi: 10.1016/0167-2789(91)90204-M
10 Deimling K. Nonlinear Functional Analysis. Berlin-New York: Springer-Verlag, 1985
11 Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. In: Brunner H, Zhao X Q, Zou X F, eds. Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, 48 . Providence: American Mathematical Society, 2006, 95-135
12 Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. Oxford: Oxford University Press, 1998
13 Gray P, Scott S K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford: Clarendon Press, 1990
14 Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Jour Sound and Vibr , 1999, 225(5): 935-988
doi: 10.1006/jsvi.1999.2257
15 Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol 840 . Berlin-New York: Springer-Verlag, 1981
16 Hsu S-B. Ordinary Differential Equations with Applications. Series on Applied Mathematics, 16 . Hackensack: World Scientific Publishing Co Pte Ltd, 2006
17 Hsu S-B, Shi J P. Relaxation oscillator profile of limit cycle in predator-prey system. Disc Cont Dyns Syst-B (to appear)
18 Jang J, Ni W-M, Tang M X. Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. J Dynam Differential Equations , 2004, 16(2): 297-320
doi: 10.1007/s10884-004-2782-x
19 Jiang J F, Shi J P. Bistability dynamics in some structured ecological models. In: Spatial Ecology: A Collection of Essays . Boca Raton: CRC Press, 2009 (in press)
20 Kielh?fer H. Bifurcation Theory. An Introduction with Applications to PDEs. Applied Mathematical Sciences, Vol 156 . New York: Springer-Verlag,2004
21 Lengyel I, Epstein I R. Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system. Science , 1991, 251: 650-652
doi: 10.1126/science.251.4994.650
22 Lengyel I, Epstein I R. A chemical approach to designing Turing patterns in reactiondiffusion system. Proc Natl Acad Sci USA , 1992, 89: 3977-3979
doi: 10.1073/pnas.89.9.3977
23 Liu P, Shi J P, Wang Y W. Imperfect transcritical and pitchfork bifurcations. Jour Func Anal , 2007, 251(2): 573-600
doi: 10.1016/j.jfa.2007.06.015
24 López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Chapman & Hall/CRC Research Notes in Mathematics, Vol 426 . Boca Raton: Chapman & Hall/CRC, 2001
25 Medvinsky A B, Petrovskii S V, Tikhonova I A, Malchow H, Li B-L. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev , 2002, 44(3): 311-370
doi: 10.1137/S0036144502404442
26 Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals , 2004, 19: 367-376
doi: 10.1016/S0960-0779(03)00049-3
27 Murray J D. Mathematical Biology. I. An Introduction. 3rd Ed. Interdisciplinary Applied Mathematics, Vol 17 . New York: Springer-Verlag, 2003
28 Murray J D. Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Vol 18 . New York: Springer-Verlag, 2003
29 Ni W-M, Tang M X. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc , 2005, 357(10): 3953-3969
doi: 10.1090/S0002-9947-05-04010-9
30 Nirenberg L. Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, Vol 6. New York University, Courant Institute of Mathematical Sciences, New York . Providence: American Mathematical Society, 2001
31 Nishiura Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J Math Anal , 1982, 13(4): 555-593
doi: 10.1137/0513037
32 Okubo A, Levin S. Diffusion and Ecological Problems: Modern Perspectives. 2nd Ed. Interdisciplinary Applied Mathematics, Vol 14 . New York: Springer-Verlag, 2001
33 Pejsachowicz J, Rabier P J. Degree theory for C1 Fredholm mappings of index 0. J Anal Math , 1998, 76: 289-319
doi: 10.1007/BF02786939
34 Rabinowitz P H. Some global results for nonlinear eigenvalue problems. Jour Func Anal , 1971, 7: 487-513
doi: 10.1016/0022-1236(71)90030-9
35 Reiss E L. Column buckling—an elementary example of bifurcation. In: Keller J B, Antman S, eds. Bifurcation Theory and Nonlinear Eigenvalue Problems . New York-Amsterdam: W A Benjamin, Inc, 1969, 1-16
36 Reiss E L. Imperfect bifurcation. In: Applications of Bifurcation Theory (Proc Advanced Sem, Univ Wisconsin, Madison, Wis, 1976). Publ Math Res Center Univ Wisconsin, No 38 . New York: Academic Press, 1977, 37-71
37 Rosenzweig M L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science , 1971, 171(3969): 385-387
doi: 10.1126/science.171.3969.385
38 Shi J P. Persistence and bifurcation of degenerate solutions. Jour Func Anal , 1999, 169(2): 494-531
doi: 10.1006/jfan.1999.3483
39 Shi J P. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multiplicity. Singapore: World Scientific Publishing Co Pte Ltd, 2009
40 Shi J P, Wang X F. On global bifurcation for quasilinear elliptic systems on bounded domains. Jour Diff Equations , 2009, 246(7): 2788-2812
doi: 10.1016/j.jde.2008.09.009
41 Timosehnko S P. History of Strength of Materials. New York: Dover Publications, Inc, 1953
42 Turing A M. The chemical basis of morphogenesis. Philosophical Transaction of Royal Society of London , 1952, B237: 37-72
doi: 10.1098/rstb.1952.0012
43 von Hardenberg J, Meron E, Shachak M, Zarmi Y. Diversity of vegetation patterns and desertification. Phys Rev Lett , 2001, 87: 198101
doi: 10.1103/PhysRevLett.87.198101
44 Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal Real World Appl , 2008, 9(3): 1038-1051
doi: 10.1016/j.nonrwa.2007.02.005
45 Yi F Q, Wei J J, Shi J P. Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system. Jour Diff Equations , 2009, 246(5): 1944-1977
doi: 10.1016/j.jde.2008.10.024
46 Yi F Q, Wei J J, Shi J P. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. Appl Math Lett , 2009, 22(1): 52-55
doi: 10.1016/j.aml.2008.02.003
[1] Rongrong JIN, Guangcun LU. Variational study of bifurcations in von Kármán equations[J]. Front. Math. China, 2019, 14(3): 567-590.
[2] Ming SONG, Zhengrong LIU, Essaid ZERRAD, Anjan BISWAS. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity[J]. Front Math Chin, 2013, 8(1): 191-201.
[3] LIU Yicheng, DU Yimin, WU Jianhong. Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates[J]. Front. Math. China, 2008, 3(4): 535-553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed