Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 567-590    https://doi.org/10.1007/s11464-019-0766-8
RESEARCH ARTICLE
Variational study of bifurcations in von Kármán equations
Rongrong JIN, Guangcun LU()
Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(379 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For a class of nonlinear elliptic boundary value problems including the von Kármán equations considered by D. M. Duc, N. L. Luc, L. Q. Nam, and T. T. Tuyen [Nonlinear Anal., 2003, 55: 951{968], we give a new proof of a corresponding theorem of three solutions via Morse theory instead of topological degree theory. Several bifurcation results for this class of boundary value problems are also obtained with Morse theory methods. In addition, for the von Kármán equations studied by A. Borisovich and J. Janczewska [Abstr. Appl. Anal., 2005, 8: 889{899], we prove a few of bifurcation results under Dirichlet boundary conditions based on the second named author's recent work about parameterized splitting theorems and bifurcations for potential operators.

Keywords Morse theory      von K_arm_an equations      bifurcation     
Corresponding Author(s): Guangcun LU   
Issue Date: 10 July 2019
 Cite this article:   
Rongrong JIN,Guangcun LU. Variational study of bifurcations in von Kármán equations[J]. Front. Math. China, 2019, 14(3): 567-590.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0766-8
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/567
1 H Amann. A note on degree theory for gradient mappings. Proc Amer Math Soc, 1982, 85: 591C–595
https://doi.org/10.1090/S0002-9939-1982-0660610-2
2 M S Berger. On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate. Comm Pure Appl Math, 1967, 20: 687–719
https://doi.org/10.1002/cpa.3160200405
3 M S Berger. On the existence of equilibrium states of thin elastic shells (I). Indiana Univ Math J, 1971, 20: 591–602
https://doi.org/10.1512/iumj.1971.20.20048
4 M S Berger. Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure Appl Math, Vol 74. New York: Academic Press, 1977
5 M S Berger, P C Fife. Von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm Pure Appl Math, 1968, 21: 227–241
https://doi.org/10.1002/cpa.3160210303
6 A Borisovich, J Janczewska. Stable and unstable bifurcation in the von Kármán problem for a circular plate. Abstr Appl Anal, 2005, 8: 889–899
https://doi.org/10.1155/AAA.2005.889
7 A Canino. Variational bifurcation for quasilinear elliptic equations. Calc Var Partial Differential Equations, 2003, 18: 269–286
https://doi.org/10.1007/s00526-003-0200-6
8 K C Chang. Infinite Dimensional Morse Theory and Multiple Solution Problems. Progr Nonlinear Differential Equations Appl, Vol 6. Boston: Birkhauser, 1993
https://doi.org/10.1007/978-1-4612-0385-8
9 I Chueshov, I Lasiecka. Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics. Springer Monogr Math. New York: Springer, 2010
https://doi.org/10.1007/978-0-387-87712-9
10 P G Ciarlet. Mathematical Elasticity, Vol III. Theory of Shells. Studies in Mathematics and its Applications, Vol 29. Amsterdam: North-Holland Publishing Co, 2000
11 M G Crandall, P H Rabinowitz. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321–340
https://doi.org/10.1016/0022-1236(71)90015-2
12 D M Duc, N L Luc, L Q Nam, T T Tuyen. On topological degree for potential operators of class (S)+: Nonlinear Anal, 2003, 55: 951–968
https://doi.org/10.1016/j.na.2003.07.016
13 E R Fadell, P H Rabinowitz, Bifurcation for odd potential operators and an alternative topological index. J Funct Anal, 1977, 26: 48–67
https://doi.org/10.1016/0022-1236(77)90015-5
14 F Gazzola, H-C Grunau, G Sweers. Polyharmonic Boundary Value Problems. Lecture Notes in Math, Vol 1991. Berlin: Springer, 2010
https://doi.org/10.1007/978-3-642-12245-3
15 J Janczewska. Multiple bifurcation in the solution set of the von Kármán equations with S1-symmetries. Bull Belg Math Soc Simon Stevin, 2008, 15: 109–126
16 T Von Karman. Festigkeitsprobleme in Maschinenbau. In: Encyklopedie der Mathematischen Wissenschaften, 4. Leipzig: Teubner, 1910, 348–352
17 G Lu. Morse theory methods for a class of quasi-linear elliptic systems of higher order. arXiv: 1709.02337v3
18 G Lu. Parameterized splitting theorems and bifurcations for potential operators. arXiv: 1712.03479v1
19 J Mawhin, M Willem. Critical Point Theory and Hamiltonian Systems. Appl Math Sci, Vol 74. New York: Springer, 1989
https://doi.org/10.1007/978-1-4757-2061-7
20 P H Rabinowitz. A note on topological degree for potential operators. J Math Anal Appl, 1975, 51: 483–492
https://doi.org/10.1016/0022-247X(75)90134-1
21 P H Rabinowitz. A bifurcation theorem for potential operators. J Funct Anal, 1977, 25: 412{424
https://doi.org/10.1016/0022-1236(77)90047-7
22 E Zeidler. Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics. New York: Springer, 1988
https://doi.org/10.1007/978-1-4612-4566-7
[1] Ming SONG, Zhengrong LIU, Essaid ZERRAD, Anjan BISWAS. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity[J]. Front Math Chin, 2013, 8(1): 191-201.
[2] Junping SHI. Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models[J]. Front Math Chin, 2009, 4(3): 407-424.
[3] LIU Yicheng, DU Yimin, WU Jianhong. Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates[J]. Front. Math. China, 2008, 3(4): 535-553.
[4] RADEMACHER Hans-Bert. The second closed geodesic on a complex projective plane[J]. Front. Math. China, 2008, 3(2): 253-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed