Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2010, Vol. 5 Issue (3) : 589-606    https://doi.org/10.1007/s11464-010-0058-9
Research articles
Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schröodinger equation
Chunxiong ZHENG,
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China;
 Download: PDF(3388 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fast evaluation of the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation is considered in this paper. In [J. Comput.Math., 2007, 25(6): 730―745], the author proposed a fast evaluation method for the half-order time derivative operator. In this paper, we apply this method for the exact transparent boundary condition for the one-dimensional cubic nonlinear Schrödinger equation. Numerical tests demonstrate the effectiveness of the proposed method.
Keywords Schrödinger equation      transparent boundary condition      fast evaluation      unbounded domain      
Issue Date: 05 September 2010
 Cite this article:   
Chunxiong ZHENG. Fast evaluation of exact transparent boundary condition for one-dimensional cubic nonlinear Schröodinger equation[J]. Front. Math. China, 2010, 5(3): 589-606.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-010-0058-9
https://academic.hep.com.cn/fmc/EN/Y2010/V5/I3/589
Antoine X, Arnold A, Besse C, Ehrhardt M, Schädle A. A review of transparent 606Chunxiong ZHENG and artificial boundary conditions techniques forlinear and nonlinear Schrödinger equations. Comm Comput Sci, 2008, 4: 729―796
Antoine X, Besse C. Unconditionally stable discretizationschemes of non-reflecting boundary conditions for the one-dimensionalSchrödinger equation. J Comput Phys, 2003, 181(1): 157―175

doi: 10.1016/S0021-9991(03)00159-1
Antoine X, Besse C, Descombes S. Artificial boundary conditions for one-dimensional cubicnonlinear Schrödinger equations, SIAMJ Numer Anal, 2006, 43(6): 2272―2293

doi: 10.1137/040606983
Arnold A. Numericallyabsorbing boundary conditions for quantum evolution equations. VLSI Design, 1998, 6: 313―319

doi: 10.1155/1998/38298
Arnold A, Ehrhardt M. Discrete transparent boundaryconditions for wide angle parabolic equations in underwater acoustics. J Comput Phys, 1998, 145: 611―638

doi: 10.1006/jcph.1998.6043
Arnold A, Ehrhardt M, Sofronov I. Approximation, stability and fast calculation of non-localboundary conditions for the Schrödinger equation. Commun Math Sci, 2003, 1(3): 501―556
Baskakov V A, Popov A V. Implementation of transparentboundaries for the numerical solution of the Schrödinger equation. Wave Motion, 1991, 14: 123―128

doi: 10.1016/0165-2125(91)90053-Q
Bell W W. Special Functions for Scientists and Engineers. New York: D Van Nostrand Company,Ltd, 1968
Besse C. Arelaxation scheme for the nonlinear Schröodinger equation. SIAM J Numer Anal, 2004, 42(3): 934―952

doi: 10.1137/S0036142901396521
Boutet de Monvel A, Fokas A S, Shepelsky D. Analysis of the global relation for the nonlinear Schrödingerequation on the half-line. Lett Math Phys, 2003, 65: 199―212

doi: 10.1023/B:MATH.0000010711.66380.77
Davydov A S. Solitons in Molecular Systems. Dordrecht: Reidel, 1985
Delfour M, Fortin M, Payre G. Finite-difference solutions of a nonlinear Schrödingerequation. J Comput Phys, 1981, 44: 277―288

doi: 10.1016/0021-9991(81)90052-8
Durán A, Sanz-Serna J M. The numerical integrationof relative equilibrium solution. The nonlinear Schrödinger equation. IMA J Numer Anal, 2000, 20(2): 235―261

doi: 10.1093/imanum/20.2.235
Ehrhardt M, Arnold A. Discrete transparent boundaryconditions for the Schrödinger equation. Riv Math Univ Parma, 2001, 6(4): 57―108
Gorenflo R, Mainardi F. Fractional calculus: integraland differential equations of fractional order. In: Carpinteri A,Mainardi F, Eds. Fractals and FractionalCalculus in Continuum Mechanics. Wien: Springer, 1997, 223―276
Han H, Huang Z Y. Exact artificial boundaryconditions for Schrödinger equation in 2. Comm Math Sci, 2004, 2: 79―94
Han H, Yin D S, Huang Z Y. Numerical solutions of Schrödinger equations in 3. Numer Meth Partial Diff Eqs, 2006, 23: 511―533

doi: 10.1002/num.20193
Hasegawa A. OpticalSolitons in Fibers. Berlin: Springer-Verlag, 1989
Jiang S, Greengard L. Fast evaluation of nonreflectingboundary conditions for the Schrödinger equation in one dimension. Comput Math Appl, 2004, 47: 955―966

doi: 10.1016/S0898-1221(04)90079-X
Mayfield B. NonLocal Boundary Conditions for the Schrödinger Equation. Ph D Thesis. Providence: University of RhodesIsland, 1989
Papadakis J S. Exact nonreflecting boundary conditions for parabolic-type approximationsin underwater acoustics. J Comput Acoust, 1994, 2(2): 83―98

doi: 10.1142/S0218396X94000075
Schmidt F, Deuflhard P. Discrete transparent boundaryconditions for the numerical solution of Fresnel’s equation. Comput Math Appl, 1995, 29(9): 53―76

doi: 10.1016/0898-1221(95)00037-Y
Schmidt F, Yevick D. Discrete transparent boundaryconditions for Schrödingertype equations. J Comput Phys, 1997, 134: 96―107

doi: 10.1006/jcph.1997.5675
Sulem C, Sulem P. The Nonlinear SchrödingerEquation. Berlin: Springer, 2000
Sun Z Z, Wu X. The stability and convergenceof a difference scheme for the Schrödinger equation on an infinitedomain by using artificial boundary conditions. J Comput Phys, 2006, 214(1): 209―223

doi: 10.1016/j.jcp.2005.09.011
Yevick D, Friese T, Schmidt F. A comparison of transparent boundary conditions for theFresnel equation. J Comput Phys, 2001, 168: 433―444

doi: 10.1006/jcph.2001.6708
Zheng C. Exactnonreflecting boundary conditions for one-dimensional cubic nonlinearSchrödinger equations. J Comput Phys, 2006, 215: 552―565

doi: 10.1016/j.jcp.2005.11.005
Zheng C. Approximation,stability and fast evaluation of exact artificial boundary conditionfor the one-dimensional heat equation. J Comput Math, 2007, 25(6): 730―745
[1] GUO Boling, WANG Guolian. Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation[J]. Front. Math. China, 2008, 3(4): 495-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed