Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    0, Vol. Issue () : 397-413    https://doi.org/10.1007/s11464-012-0179-4
RESEARCH ARTICLE
Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
Yanping CHEN1(), Zuliang LU2,3, Ruyi GUO4
1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China; 2. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; 3. School of Mathematics and Statistics, China Three Gorges University, Chongqing 404000, China; 4. Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics, Xiangtan University, Xiangtan 411105, China
 Download: PDF(693 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Abstract The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial diffential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.

Keywords A priori error estimate      quasilinear elliptic equation      general convex optimal control problem      triangular mixed finite element method     
Corresponding Author(s): CHEN Yanping,Email:yanpingchen@scnu.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Yanping CHEN,Zuliang LU,Ruyi GUO. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems[J]. Front Math Chin, 0, (): 397-413.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0179-4
https://academic.hep.com.cn/fmc/EN/Y0/V/I/397
1 Arada N, Casas E, Tr?ltzsch F. Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput Optim Appl , 2002, 23(2): 201-229
doi: 10.1023/A:1020576801966
2 Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. Oxford: Oxford University Press, 2001
3 Becker R, Kapp H, Rannacher R. Adaptive ?nite element methods for optimal control of partial differential equations: basic concept. SIAM J Control Optim , 2000, 39(1): 113-132
doi: 10.1137/S0363012999351097
4 Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal Numer , 1974, 8(2): 129-151
5 Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer, 1991
doi: 10.1007/978-1-4612-3172-1
6 Chen Y, Liu W. Posteriori error estimates for mixed ?nite elements of a quadratic optimal control problem. Recent Progress Comp Appl PDEs , 2002, 3: 123-134
doi: 10.1007/978-1-4615-0113-8_8
7 Chen Y, Liu W. Error estimates and superconvergence of mixed ?nite element for quadratic optimal control. Int J Num Anal Model , 2006, 3(3): 311-321
8 Chen Y, Liu W. A posteriori error estimates for mixed ?nite element solutions of convex optimal control problems. J Comput Appl Math , 2008, 211(1): 76-89
doi: 10.1016/j.cam.2006.11.015
9 Chen Y, Lu Z. Error estimates of fully discrete mixed ?nite element methods for semilinear quadratic parabolic optimal control problems. Comput Methods Appl Mech Engrg , 2010, 199(1): 1415-1423
doi: 10.1016/j.cma.2009.11.009
10 Chen Y, Lu Z. Error estimates for parabolic optimal control problem by fully discrete mixed ?nite element methods. Finite Elem Anal Des , 2010, 46(4): 957-965
doi: 10.1016/j.finel.2010.06.011
11 Falk F. Approximation of a class of optimal control problems with order of convergence estimates. J Math Anal Appl , 1973, 44(1): 28-47
doi: 10.1016/0022-247X(73)90022-X
12 Geveci T. On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO: Numer Anal , 1979, 33: 313-328
13 Grisvard P. Elliptic Problems in Nonsmooth Domains. London: Pitman, 1985
14 Gunzburger M, Hou S. Finite dimensional approximation of a class of constrained nonlinear control problems. SIAM J Control Optim , 1996, 34(3): 1001-1043
doi: 10.1137/S0363012994262361
15 Li R, Liu W. http://circus.math.pku.edu.cn/AFEPack
16 Li R, Liu W, Ma H, Tang T. Adaptive ?nite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim , 2002, 41(5): 1321-1349
doi: 10.1137/S0363012901389342
17 Lions J. Optimal Control of systems Governed by Partial Differential Equations. Berlin: pringer, 1971
18 Liu W, Tiba D. Error estimates for the ?nite element approximation of a class of nonlinear optimal control problems. J Numer Func Optim , 2001, 22: 935-972
19 Liu W, Yan N. A posteriori error estimates for distributed convex optimal control problems. Adv Comput Math , 2001, 15(4): 285-309
doi: 10.1023/A:1014239012739
20 Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equation. Appl Numer Math , 2003, 47(2): 173-187
doi: 10.1016/S0168-9274(03)00054-0
21 Lu Z, Chen Y. A posteriori error estimates of triangular mixed ?nite element methods for semilinear optimal control problems. Adv Appl Math Mech , 2009, 1(2): 242-256
22 Lu Z, Chen Y. L-error estimates of triangular mixed ?nite element methods for optimal control problem govern by semilinear elliptic equation. Numer Anal Appl , 2009, 12(1): 74-86
doi: 10.1134/S1995423909010078
23 Lu Z, Chen Y, Zhang H. A priori error analysis of mixed methods for nonlinear quadratic optimal control problems. Lobachevskii J Math , 2008, 29(2): 164-174
doi: 10.1134/S1995080208030074
24 Malanowski K. Convergence of approximation vs. regularity of solutions for convex control constrained optimal control systems. Appl Math Optim , 1981, 8(1): 69-95
doi: 10.1007/BF01447752
25 Miliner F. Mixed ?nite element methods for quasilinear second-order elliptic problems. Math Comp , 1985, 44(170): 303-320
doi: 10.1090/S0025-5718-1985-0777266-1
26 Raviart P, Thomas J. A mixed ?nite element method for 2nd order elliptic problems. In: Math Aspects of the Finite Element Method. Lecture Notes in Math, Vol 606 . Berlin: Springer, 1977, 292-315
doi: 10.1007/BFb0064470
[1] Lili CHANG, Ningning YAN, Wei GONG, . Finite element method for a nonsmooth elliptic equation[J]. Front. Math. China, 2010, 5(2): 191-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed