|
|
Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus |
Kai TAO( ) |
Department of Mathematics, Nanjing University, Nanjing 210093, China |
|
|
Abstract It is known that the Lyapunov exponent is not continuous at certain points in the space of continuous quasi-periodic cocycles. We show that the Lyapunov exponent is continuous for a higher-dimensional analytic category in this paper. It has a modulus of continuity of the form exp?(-|log?t|σ) for some 0<σ<1.
|
Keywords
Analytic quasi-periodic cocycle
Lyapunov exponent
continuity
large deviation theorem
avalanche principle
|
Corresponding Author(s):
TAO Kai,Email:tao.nju@gmail.com
|
Issue Date: 01 June 2012
|
|
1 |
Avila A, Jitomirskaya S. The Ten Martini problem. Ann Math , 2009, 170: 303-342 doi: 10.4007/annals.2009.170.303
|
2 |
Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle. Preprint , 1999
|
3 |
Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems , 2002, 22: 1667-1696 doi: 10.1017/S0143385702001165
|
4 |
Bochi J, Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann Math , 2005, 161: 1423-1485 doi: 10.4007/annals.2005.161.1423
|
5 |
Bourgain J. Green’s Function Estimates for Lattice Schr?odinger Operators and Applications. Ann Math Stud, No 158 . Princeton: Princeton University Press, 2005
|
6 |
Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on Td with arbitrary frequency vector and real analytic potential. J Anal Math , 2005, 96: 313-355 doi: 10.1007/BF02787834
|
7 |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schr?dinger operators on ? with potentials given by the skew-shift. Commun Math Physics , 2001, 220: 583-621 doi: 10.1007/PL00005570
|
8 |
Bourgain J, Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys , 2002, 108(5-6): 1203-1218 doi: 10.1023/A:1019751801035
|
9 |
Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems. Ann Inst Henri Poincaré , 1997, 33: 797-815
|
10 |
Goldstein M, Schlag W. H?lder continuity of the integrated density of states for quasiperiodic Schr?dinger equations and averages of shifts of subharmonic functions. Ann Math , 2001, 154: 155-203 doi: 10.2307/3062114
|
11 |
Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann Math , 1999, 150: 1159-1175 doi: 10.2307/121066
|
12 |
Jitomisrkaya S, Koslover D, Schulteis M. Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles. Ergodic Theory Dynam Systems , 2009, 29: 1881-1905 doi: 10.1017/S0143385709000704
|
13 |
Jitomirskaya S, Marx C. Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles with singularities. J Fixed Point Theory and Appl (to appear)
|
14 |
Lojasiewicz S. Sur le probléme de la division. Studia Math , 1959, 18: 87-136
|
15 |
Thouless D. Bandwidth for a quasiperiodic tight-binding model. Phys Rev , 1983, 28: 4272-4276 doi: 10.1103/PhysRevB.28.4272
|
16 |
Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Pro Steklov Inst Math , 1997, 216: 366-369
|
17 |
Young L. Some open sets of non-uniformly hyperbolic cocycles. Ergodic Theory Dynam Systems , 1993, 13: 409-415 doi: 10.1017/S0143385700007446
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|