Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2012, Vol. 7 Issue (3) : 521-542    https://doi.org/10.1007/s11464-012-0201-x
RESEARCH ARTICLE
Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus
Kai TAO()
Department of Mathematics, Nanjing University, Nanjing 210093, China
 Download: PDF(211 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is known that the Lyapunov exponent is not continuous at certain points in the space of continuous quasi-periodic cocycles. We show that the Lyapunov exponent is continuous for a higher-dimensional analytic category in this paper. It has a modulus of continuity of the form exp?(-|log?t|σ) for some 0<σ<1.

Keywords Analytic quasi-periodic cocycle      Lyapunov exponent      continuity      large deviation theorem      avalanche principle     
Corresponding Author(s): TAO Kai,Email:tao.nju@gmail.com   
Issue Date: 01 June 2012
 Cite this article:   
Kai TAO. Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus[J]. Front Math Chin, 2012, 7(3): 521-542.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-012-0201-x
https://academic.hep.com.cn/fmc/EN/Y2012/V7/I3/521
1 Avila A, Jitomirskaya S. The Ten Martini problem. Ann Math , 2009, 170: 303-342
doi: 10.4007/annals.2009.170.303
2 Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle. Preprint , 1999
3 Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems , 2002, 22: 1667-1696
doi: 10.1017/S0143385702001165
4 Bochi J, Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann Math , 2005, 161: 1423-1485
doi: 10.4007/annals.2005.161.1423
5 Bourgain J. Green’s Function Estimates for Lattice Schr?odinger Operators and Applications. Ann Math Stud, No 158 . Princeton: Princeton University Press, 2005
6 Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on Td with arbitrary frequency vector and real analytic potential. J Anal Math , 2005, 96: 313-355
doi: 10.1007/BF02787834
7 Bourgain J, Goldstein M, Schlag W. Anderson localization for Schr?dinger operators on ? with potentials given by the skew-shift. Commun Math Physics , 2001, 220: 583-621
doi: 10.1007/PL00005570
8 Bourgain J, Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys , 2002, 108(5-6): 1203-1218
doi: 10.1023/A:1019751801035
9 Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems. Ann Inst Henri Poincaré , 1997, 33: 797-815
10 Goldstein M, Schlag W. H?lder continuity of the integrated density of states for quasiperiodic Schr?dinger equations and averages of shifts of subharmonic functions. Ann Math , 2001, 154: 155-203
doi: 10.2307/3062114
11 Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann Math , 1999, 150: 1159-1175
doi: 10.2307/121066
12 Jitomisrkaya S, Koslover D, Schulteis M. Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles. Ergodic Theory Dynam Systems , 2009, 29: 1881-1905
doi: 10.1017/S0143385709000704
13 Jitomirskaya S, Marx C. Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles with singularities. J Fixed Point Theory and Appl (to appear)
14 Lojasiewicz S. Sur le probléme de la division. Studia Math , 1959, 18: 87-136
15 Thouless D. Bandwidth for a quasiperiodic tight-binding model. Phys Rev , 1983, 28: 4272-4276
doi: 10.1103/PhysRevB.28.4272
16 Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Pro Steklov Inst Math , 1997, 216: 366-369
17 Young L. Some open sets of non-uniformly hyperbolic cocycles. Ergodic Theory Dynam Systems , 1993, 13: 409-415
doi: 10.1017/S0143385700007446
[1] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[2] Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Front. Math. China, 2018, 13(1): 161-172.
[3] Jinhao LIANG, Po-Jen KUNG. Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2017, 12(3): 607-639.
[4] Dejun LUO,Jian WANG. Hölder continuity of semigroups for time changed symmetric stable processes[J]. Front. Math. China, 2016, 11(1): 109-121.
[5] Dejun LUO. Pathwise uniqueness of multi-dimensional stochastic differential equations with H?lder diffusion coefficients[J]. Front Math Chin, 2011, 6(1): 129-136.
[6] CHENG Minde, CHEN Yonghe. Approximation of several dimensional functions by trigonometric polynomials[J]. Front. Math. China, 2006, 1(4): 499-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed