Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2014, Vol. 9 Issue (1) : 101-109    https://doi.org/10.1007/s11464-013-0348-0
RESEARCH ARTICLE
Multiplication formulas for Kubert functions
Hailong LI1, Jing MA2(), Yuichi URAMATSU3
1. Department of Mathematics, Weinan Teachers’ University, Weinan 714000, China; 2. School of Mathematics, Jilin University, Changchun 130012, China; 3. Graduate School of Advanced Technology, Kinki University, Iizuka, Fukuoka 820-8555, Japan
 Download: PDF(114 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this paper is two folds. First, we shall prove a general reduction theorem to the Spannenintegral of products of (generalized) Kubert functions. Second, we apply the special case of Carlitz’s theorem to the elaboration of earlier results on the mean values of the product of Dirichlet L-functions at integer arguments. Carlitz’s theorem is a generalization of a classical result of Nielsen in 1923. Regarding the reduction theorem, we shall unify both the results of Carlitz (for sums) and Mordell (for integrals), both of which are generalizations of preceding results by Frasnel, Landau, Mikolás, and Romanoff et al. These not only generalize earlier results but also cover some recent results. For example, Beck’s lamma is the same as Carlitz’s result, while some results of Maier may be deduced from those of Romanoff. To this end, we shall consider the Stiletjes integral which incorporates both sums and integrals. Now, we have an expansion of the sum of products of Bernoulli polynomials that we may apply it to elaborate on the results of afore-mentioned papers and can supplement them by related results.

Keywords Kubert function      multiplication formula      integral formula      Bernoulli polynomial      mean value     
Corresponding Author(s): MA Jing,Email:jma@jlu.edu.cn   
Issue Date: 01 February 2014
 Cite this article:   
Hailong LI,Jing MA,Yuichi URAMATSU. Multiplication formulas for Kubert functions[J]. Front Math Chin, 2014, 9(1): 101-109.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-013-0348-0
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I1/101
1 Apostol T M. Mathematical Analysis. Reading: Addison-Wesley Publishing Company, Inc , 1957
2 Apostol T M, Vu T H. Identities for sums of Dedekind type. J Number Theory , 1982, 14: 391-396
doi: 10.1016/0022-314X(82)90074-9
3 Beck M. Dedekind cotangent sums. Acta Arith , 2003, 109: 109-130
doi: 10.4064/aa109-2-1
4 Berndt B C. A generalization of a theorem of Gauss on sums involving [x]. Amer Math Monthly , 1973, 82: 44-51
doi: 10.2307/2319132
5 Carlitz L. Some finite summation formulas of arithmetic character. Publ Math Debrecen , 1959, 6: 262-268
6 Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 1. Ramanujan J , 2002, 6: 159-188
doi: 10.1023/A:1015706300169
7 Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 2. Ramanujan J , 2002, 6: 449-468
doi: 10.1023/A:1021171500736
8 Franel J. Les suites de Farey et le probl`eme des nombres premiers. Nachr Math Ges Wiss Gtingen , 1924: 198-201
9 Fukuhara S, Yui N. A generating function for higher-dimensional Apostol-Zagier sums and their reciprocity law. J Number Theory , 2006, 117: 87-105
doi: 10.1016/j.jnt.2005.05.008
10 Hashimoto M, Kanemitsu S, Li H L. Examples of the Hurwitz transform. J Math Soc Japan , 2009, 61: 651-660
doi: 10.2969/jmsj/06130651
11 Kanemitsu S, Li H L, Ma J. Some results on Kubert functions (in preparation)
12 Kanmeitsu S, Ma J, Zhang W P. On the discrete mean value of the product of two Dirichlet L-functions. Abh Math Sem Univ Hamburg , 2009, 79: 149-164
doi: 10.1007/s12188-009-0016-1
13 Kanemitsu S, Tsukada H. Vistas of Special Functions. Singapore-London-New York: World Scientific, 2007
14 Katsurada M, Matsumoto K. The mean values of Dirichlet L-function at integer points and class numbers of cyclotomic fields. Nagoya Math J , 1994, 134: 151-172
15 Knopp M. Hecke operators and an identity for Dedekind sums. J Number Theory , 1980, 12: 2-9
doi: 10.1016/0022-314X(80)90067-0
16 Kozuka K. Dedekind type sums attached to Dirichlet characters. Kyushu J Math , 2004, 58: 1-24
doi: 10.2206/kyushujm.58.1
17 Kozuka K. Some identities for multiple Dedekind sums attached to Dirichlet characters. Acta Arith , 2011, 146: 103-114
doi: 10.4064/aa146-2-1
18 Landau E. Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Nachr Math Ges Wiss G?ttingen , 1924: 202-206
19 Landau E. Vorlesungen über Zahlentheorie, B. II. Lepzig , 1927
20 Liu G D, Wang N L, Wang X H. The discrete mean square of Dirichlet L-function at integral arguments. Proc Japan Acad Ser A Math Sci , 2010, 86(9): 149-153
doi: 10.3792/pjaa.86.149
21 Maier H. Cyclotomic polynomials whose orders contain many prime factors. Period Math Hungar , 2001, 43: 155-164
doi: 10.1023/A:1015293917813
22 Mikolás M. Mellinsche Transformation und Orthogonalit?t bei ζ(s, u). Verallgemeinrung der Riemannschen Funktionalgleichung von ζ(s). Acta Sci Math (Szeged) , 1956, 17: 143-164
23 Mikolás M. Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz. Publ Math Debrecen , 1957, 5: 44-53
24 Mikolás M. On certain sums generating the Dedekind sums. Pacific J Math , 1957, 7: 1167-1178
doi: 10.2140/pjm.1957.7.1167
25 Milnor J. On polylogarithms, Hurwitz zeta-functions, and the Kubert identities Enseign Math, 1983, 29(2): 281-322
26 Mordell L J. Integral formulae of arithmetical character. J Lond Math Soc , 1958, 33: 371-375
doi: 10.1112/jlms/s1-33.3.371
27 Nagasaka C. Dedekind type sums and Hecke operators. Acta Arith , 1984, 44: 207-214
28 Nielsen N. Traitéélémentaire des nombres de Bernoulli. Paris: Gauther-Villars, 1923
29 Parson L A, Rosen K. Hecek operators and generalized Dedekind sum. Math Scand , 1981, 49: 5-14
30 Romanoff N P. Hilbert spaces and number theory II. Izv Akad Nauk SSSR, Ser Mat , 1951, 15: 131-152
31 Sun Z W. On covering equivalence. In: Jia Ch-H,Matsumoto K, eds. Analytic Number Theory . Dordrecht: Kluwer, 2002, 277-302
doi: 10.1007/978-1-4757-3621-2_18
32 Walum H. Multiplication formulae for periodic functions. Pacific J Math , 1991, 149(2): 383-396
doi: 10.2140/pjm.1991.149.383
33 Widder D W. Advanced Calculus. 2nd ed. New York: Dover Publ, 1989
34 Zheng Z. The Petersson-Knopp identity for the homogenous Dedekind sums. J Number Theory , 1996, 57: 223-230
doi: 10.1006/jnth.1996.0045
[1] Xuanxuan XIAO, Wenguang ZHAI. Second moment of error term of mean value for binary Egyptian fractions[J]. Front. Math. China, 2020, 15(1): 183-204.
[2] Lin CHEN,Guangbin REN,Haiyan WANG. Bicomplex Hermitian Clifford analysis[J]. Front. Math. China, 2015, 10(3): 523-546.
[3] Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Front Math Chin, 2011, 6(3): 557-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed