Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 209-220    https://doi.org/10.1007/s11464-014-0428-9
RESEARCH ARTICLE
Embedding of circulant graphs and generalized Petersen graphs on projective plane
Yan YANG1,*(),Yanpei LIU1
1. Department of Mathematics, Tianjin University, Tianjin 300072, China
2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(170 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Both the circulant graph and the generalized Petersen graph are important types of graphs in graph theory. In this paper, the structures of embeddings of circulant graph C(2n + 1; {1, n}) on the projective plane are described, the number of embeddings of C(2n + 1; {1, n}) on the projective plane follows, then the number of embeddings of the generalized Petersen graph P(2n +1, n) on the projective plane is deduced from that of C(2n +1; {1, n}), because C(2n + 1;{1, n}) is a minor of P(2n + 1, n), their structures of embeddings have relations. In the same way, the number of embeddings of the generalized Petersen graph P(2n, 2) on the projective plane is also obtained.

Keywords Embedding      joint tree      circulant graph      generalized Petersen graph      projective plane     
Corresponding Author(s): Yan YANG   
Issue Date: 30 December 2014
 Cite this article:   
Yan YANG,Yanpei LIU. Embedding of circulant graphs and generalized Petersen graphs on projective plane[J]. Front. Math. China, 2015, 10(1): 209-220.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0428-9
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/209
1 Chen Y C. Lower bounds for the average genus of a CF-graph. Electron J Combin, 2010, 17: #R150
2 Chen Y C, Ou L, Zou Q. Total embedding distributions of Ringel ladders. Discrete Math, 2011, 311(21): 2463-2474
https://doi.org/10.1016/j.disc.2011.07.020
3 Gross J L. Genus distribution of graphs under surgery: adding edges and splitting vertices. New York J Math, 2010, 16: 161-178
4 Gross J L. Genus distributions of cubic outerplanar graphs. J Graph Algorithms Appl, 2011, 15(2): 295-316
https://doi.org/10.7155/jgaa.00227
5 Gross J L, Furst M L. Hierarchy for imbedding distribution invariants of a graph. J Graph Theory, 1987, 11: 205-220
https://doi.org/10.1002/jgt.3190110211
6 Liu Y P. Advances in Combinatorial Maps. Beijing: Northern JiaoTong University Press, 2003 (in Chinese)
7 Liu Y P. Theory of Polyhedra. Beijing: Science Press, 2008
8 Mohar B, Thomassen C. Graphs on Surfaces. Baltimore: The John Hopkins University Press, 2001
9 Poshni M I, Khan I F, Gross J L. Genus distributions of 4-regular outerplanar graphs. Electron J Combin, 2011, 18: #P212
10 Ren H, Deng M. Embeddings of circulant graphs. Acta Math Sci Ser A Chin Ed, 2007, 27: 1148-1154 (in Chinese)
11 Shao Z L, Liu Y P. The genus of a type of graph. Sci China Math, 2010, 53(2): 457-464
https://doi.org/10.1007/s11425-009-0078-7
12 Tutte W T. Combinatorial oriented maps. Canad J Math, 1979, 31(5): 986-1004
https://doi.org/10.4153/CJM-1979-091-3
13 Wan L X, Liu Y P. Orientable embedding genus distribution for certain types of graphs. J Combin Theory Ser B, 2008, 98(1): 19-32
https://doi.org/10.1016/j.jctb.2007.04.002
14 Wei E L, Liu Y P, Li Z X. The minimal genus of circular graph C(n,m). OR Trans, 2010, 14(3): 11-18
15 Yang Y, Liu Y P. Flexibility of embeddings of bouquets of circles on the projective plane and Klein bottle. Electron J Combin, 2007, 14: #R80
16 Yang Y, Liu Y P. Number of embeddings of circular and Mobius ladders on surfaces. Sci China Math, 2010, 53(5): 1393-1405
https://doi.org/10.1007/s11425-010-0063-1
17 Yang Y, Liu Y P. Flexibility of circular graphs C(2n, 2) on the projective plane. Ars Combin, 2011, 101: 75-83
[1] Yonghong HUANG, Shanzhong SUN. Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds[J]. Front. Math. China, 2020, 15(1): 91-114.
[2] Gek Ling CHIA, Chan Lye LEE. Skewness of generalized Petersen graphs and related graphs[J]. Front Math Chin, 2012, 7(3): 427-436.
[3] Jun-Ming XU, Meijie MA. Survey on path and cycle embedding in some networks[J]. Front Math Chin, 2009, 4(2): 217-252.
[4] CHEN Zhihui, CHEN Zhihui, SHEN Yaotian, SHEN Yaotian. General Hardy’s inequalities for functions nonzero on the boundary[J]. Front. Math. China, 2007, 2(2): 169-181.
[5] YAN Lixin, YANG Dachun. New Sobolev spaces via generalized Poincar? inequalities on metric measure spaces[J]. Front. Math. China, 2006, 1(3): 480-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed