Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (1) : 91-114    https://doi.org/10.1007/s11464-020-0823-3
RESEARCH ARTICLE
Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds
Yonghong HUANG1,3(), Shanzhong SUN1,2
1. Department of Mathematics, Capital Normal University, Beijing 100048, China
2. Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China
3. Qiannan Preschool Education College for Nationalities, Guiding 558000, China
 Download: PDF(335 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the curvaturedimension condition RCD(0;N) with N 2 R and N>1: In fact, we can prove that a sub-Riemannian manifold whose generic degree of nonholonomy is not smaller than 2 cannot be bi-Lipschitzly embedded in any Banach space with the Radon-Nikodym property. We also get that every regular sub-Riemannian manifold do not satisfy the curvature-dimension condition CD(K;N); where K;N 2 R and N>1: Along the way to the proofs, we show that the minimal weak upper gradient and the horizontal gradient coincide on the Carnot-Carathéodory spaces which may have independent interests.

Keywords Nilpotent Lie group      curvature-dimension condition      bi-Lipschitz embedding      sub-Riemannian manifold     
Corresponding Author(s): Yonghong HUANG   
Issue Date: 09 March 2020
 Cite this article:   
Yonghong HUANG,Shanzhong SUN. Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds[J]. Front. Math. China, 2020, 15(1): 91-114.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0823-3
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I1/91
1 A Agrachev, D Barilari, U Boscain. Introduction to Riemannian and Sub-Riemannian Geometry.
2 A D Alexandrov. A theorem on triangles in a metric space and some applications. Trudy Mat Inst Steklov, 1951, 38: 5–23
3 L Ambrosio, N Gigli, G Savare. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam, 2013, 29: 969–996
https://doi.org/10.4171/RMI/746
4 L Ambrosio, N Gigli, G Savare. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195: 289–391
https://doi.org/10.1007/s00222-013-0456-1
5 L Ambrosio, G Stefani. Heat and entropy flows in Carnot groups. arXiv: 1801.01300v3
6 A Bellaïche. The tangent space in sub-Riemannian geometry. In: Bellaïche A, Risler J-J, eds. Sub-Riemannian Geometry. Progr Math, Vol 144. Basel: Birkhäuser, 1996, 1–78
https://doi.org/10.1007/978-3-0348-9210-0
7 D Burago, Y Burago, S Ivanov. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001
https://doi.org/10.1090/gsm/033
8 J Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9: 428–517
https://doi.org/10.1007/s000390050094
9 J Cheeger, B Kleiner. On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces. In: Grffiths P A, ed. Inspired by S. S. Chern: A Memorial Volume in Honor of a Great Mathematician. Nankai Tracts Math, Vol 11. Hackensack: World Sci Publ, 2006, 129–152
https://doi.org/10.1142/9789812772688_0006
10 WL Chow.Über systeme von linearen partiellen differentialgleichungen erster ordnung. Math Ann, 1939, 117: 98–105
https://doi.org/10.1007/BF01450011
11 I M Gelfand. Abstracte functionen und lineare operatoren. Mat Sb, 1938, 46(4): 235–284
12 N Gigli. On the Differential Structure of Metric Measure Spaces and Applications. Mem Amer Math Soc, Vol 236, No 1113. Providence: Amer Math Soc, 2015
https://doi.org/10.1090/memo/1113
13 N Gigli, A Mondino, G Savare. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc Lond Math Soc (3), 2015, 111: 1071–1129
https://doi.org/10.1112/plms/pdv047
14 P Hajŀasz, P Koskela. Sobolev met Poincaré. Mem Amer Math Soc, Vol 145, No 688. Providence: Amer Math Soc, 2000
https://doi.org/10.1090/memo/0688
15 Y Huang, S Sun. The non-existence of bi-Lipschitz embedding of sub-Riemannian manifold in Banach spaces with Radon-Nikodym property . arXiv: 1801.05626
16 N Juillet. Geometric inequalities and Generalized Ricci bounds in the Heisenberg groups. Int Math Res Not IMRN, 2009, 13: 2347–2373
https://doi.org/10.1093/imrn/rnp019
17 M Karmanova, S Vodopyanov. Geometry of Carnot-Carathéodory spaces, differentiability, coarea and area formulas. In: Gustafsson B, Vasil'ev A, eds. Analysis and Mathematical Physics. Trends Math. Basel: Birkhäuser, 2009, 233–335
https://doi.org/10.1007/978-3-7643-9906-1_14
18 J Lott, C Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math, 2009, 169: 903–991
https://doi.org/10.4007/annals.2009.169.903
19 J Mitchell. On Carnot-Carathéodory metrics. J Differential Geom, 1985, 21: 35–45
https://doi.org/10.4310/jdg/1214439462
20 A Mondino, A Naber. Structure theory of metric measure space with lower Ricci curvature bounds. arXiv: 1405.2222v3
21 J C. OxtobyMeasure and Category. Grad Texts in Math, Vol 2. Berlin: Springer-Verlag, 1971
https://doi.org/10.1007/978-1-4615-9964-7
22 P Pansu. Géométrie du groupe d'Heisenberg. Thèse, Université Paris VII, 1982
23 P Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann of Math, 1989, 129: 1–60
https://doi.org/10.2307/1971484
24 S Pauls. The large scale geometry of nilpotent Lie group. Comm Anal Geom, 2001, 5(5): 951–982
https://doi.org/10.4310/CAG.2001.v9.n5.a2
25 P K Rashevsky. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch Zap Ped Inst im Liebknechta, 1938, 2: 83–84
26 X Rong. Selected Topics in Metric Riemannian Geometry. Lecture Notes, Fall 2012
27 J Seo. Bi-Lipschitz embeddability of the Grushin plane into Euclidean space. arXiv: 1011.0365v1
28 K T Sturm. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131
https://doi.org/10.1007/s11511-006-0002-8
29 K T Sturm. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177
https://doi.org/10.1007/s11511-006-0003-7
[1] Moritz GRUBER. Isoperimetry of nilpotent groups[J]. Front. Math. China, 2016, 11(5): 1239-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed