Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (1) : 199-208    https://doi.org/10.1007/s11464-014-0436-9
RESEARCH ARTICLE
Perturbations of Drazin invertible operators
Kaifan YANG1,*(),Hongke DU2
1. School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China
2. College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China
 Download: PDF(122 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The necessary and sufficient conditions for the small norm perturbation of a Drazin invertible operator to be still Drazin invertible and the sufficient conditions for the finite rank perturbation of a Drazin invertible operator to be still Drazin invertible are established.

Keywords Drazin inverse      small norm perturbation      finite rank perturbation     
Corresponding Author(s): Kaifan YANG   
Issue Date: 30 December 2014
 Cite this article:   
Kaifan YANG,Hongke DU. Perturbations of Drazin invertible operators[J]. Front. Math. China, 2015, 10(1): 199-208.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0436-9
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I1/199
1 Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: Wiley-Interscience, 1974
2 Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. New York: Dover, 1991
3 Castro-González N. Additive perturbation results for the Drazin inverse. Linear Algebra Appl, 2005, 397: 279-297
https://doi.org/10.1016/j.laa.2004.11.001
4 Castro-González N, Vélez-Cerrada J. Characterizations of matrices which eigenprojections at zero are equal to a fixed perturbation. Appl Math Comput, 2004, 159: 613-623
https://doi.org/10.1016/j.amc.2003.09.027
5 Castro-González N, Koliha J J. Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory, 2000, 36: 92-106
https://doi.org/10.1007/BF01236288
6 Castro-González N, Koliha J J, Wei Yimin. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl, 2000, 312: 181-189
https://doi.org/10.1016/S0024-3795(00)00101-4
7 Conway J B. A Course in Functional Analysis. 2nd ed. Berlin: Springer-Verlag, 1990
8 Diao H. Structured perturbations of Drazin inverse. Appl Math Comput, 2004, 158: 419-432
https://doi.org/10.1016/j.amc.2003.08.099
9 Du Hong Ke, Deng Chun Yuan. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407: 117-124
https://doi.org/10.1016/j.laa.2005.04.030
10 Hartwig R E, Wang G, Wei Y. Some additive results on Drazin inverses. Linear Algebra Appl, 2001, 322: 207-217
https://doi.org/10.1016/S0024-3795(00)00257-3
11 Li X, Wei Y. A note on the perturbation bound of the Drazin inverse. Appl Math Comput, 2003, 140: 329-340
https://doi.org/10.1016/S0096-3003(02)00230-8
12 Taylar A E, Lay D C. Introduction to Functional Analysis. 2nd ed. New York: John Wiley & Sons, 1980
13 Wei Y. Perturbation bound of the Drazin inverse. Appl Math Comput, 2002, 125: 231-244
https://doi.org/10.1016/S0096-3003(00)00126-0
14 Wei Y. The Drazin inverse of updating of a square matrix with application to perturbation formula. Appl Math Comput, 2000, 108: 77-83
https://doi.org/10.1016/S0096-3003(98)10133-9
15 Wei Y, Qiao S. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl Math Comput, 2003, 138: 77-89
https://doi.org/10.1016/S0096-3003(02)00100-5
16 Wei Y, Wang G. The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl, 1997, 258: 179-186
https://doi.org/10.1016/S0024-3795(96)00159-0
17 Wei Y, Wu H. The Perturbation of the Drazin inverse and oblique projection. Appl Math Lett, 2000, 13: 77-83
https://doi.org/10.1016/S0893-9659(99)00189-5
[1] Dijana MOSIC, Daochang ZHANG. Weighted weak group inverse for Hilbert space operators[J]. Front. Math. China, 2020, 15(4): 709-726.
[2] Gregor DOLINAR, Bojan KUZMA, Janko MAROVT, Burcu UNGOR. Properties of core-EP order in rings with involution[J]. Front. Math. China, 2019, 14(4): 715-736.
[3] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed