|
|
|
Perturbations of Drazin invertible operators |
Kaifan YANG1,*( ),Hongke DU2 |
1. School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China 2. College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China |
|
|
|
|
Abstract The necessary and sufficient conditions for the small norm perturbation of a Drazin invertible operator to be still Drazin invertible and the sufficient conditions for the finite rank perturbation of a Drazin invertible operator to be still Drazin invertible are established.
|
| Keywords
Drazin inverse
small norm perturbation
finite rank perturbation
|
|
Corresponding Author(s):
Kaifan YANG
|
|
Issue Date: 30 December 2014
|
|
| 1 |
Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: Wiley-Interscience, 1974
|
| 2 |
Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. New York: Dover, 1991
|
| 3 |
Castro-González N. Additive perturbation results for the Drazin inverse. Linear Algebra Appl, 2005, 397: 279-297
https://doi.org/10.1016/j.laa.2004.11.001
|
| 4 |
Castro-González N, Vélez-Cerrada J. Characterizations of matrices which eigenprojections at zero are equal to a fixed perturbation. Appl Math Comput, 2004, 159: 613-623
https://doi.org/10.1016/j.amc.2003.09.027
|
| 5 |
Castro-González N, Koliha J J. Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory, 2000, 36: 92-106
https://doi.org/10.1007/BF01236288
|
| 6 |
Castro-González N, Koliha J J, Wei Yimin. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl, 2000, 312: 181-189
https://doi.org/10.1016/S0024-3795(00)00101-4
|
| 7 |
Conway J B. A Course in Functional Analysis. 2nd ed. Berlin: Springer-Verlag, 1990
|
| 8 |
Diao H. Structured perturbations of Drazin inverse. Appl Math Comput, 2004, 158: 419-432
https://doi.org/10.1016/j.amc.2003.08.099
|
| 9 |
Du Hong Ke, Deng Chun Yuan. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407: 117-124
https://doi.org/10.1016/j.laa.2005.04.030
|
| 10 |
Hartwig R E, Wang G, Wei Y. Some additive results on Drazin inverses. Linear Algebra Appl, 2001, 322: 207-217
https://doi.org/10.1016/S0024-3795(00)00257-3
|
| 11 |
Li X, Wei Y. A note on the perturbation bound of the Drazin inverse. Appl Math Comput, 2003, 140: 329-340
https://doi.org/10.1016/S0096-3003(02)00230-8
|
| 12 |
Taylar A E, Lay D C. Introduction to Functional Analysis. 2nd ed. New York: John Wiley & Sons, 1980
|
| 13 |
Wei Y. Perturbation bound of the Drazin inverse. Appl Math Comput, 2002, 125: 231-244
https://doi.org/10.1016/S0096-3003(00)00126-0
|
| 14 |
Wei Y. The Drazin inverse of updating of a square matrix with application to perturbation formula. Appl Math Comput, 2000, 108: 77-83
https://doi.org/10.1016/S0096-3003(98)10133-9
|
| 15 |
Wei Y, Qiao S. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Appl Math Comput, 2003, 138: 77-89
https://doi.org/10.1016/S0096-3003(02)00100-5
|
| 16 |
Wei Y, Wang G. The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl, 1997, 258: 179-186
https://doi.org/10.1016/S0024-3795(96)00159-0
|
| 17 |
Wei Y, Wu H. The Perturbation of the Drazin inverse and oblique projection. Appl Math Lett, 2000, 13: 77-83
https://doi.org/10.1016/S0893-9659(99)00189-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|