Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (4) : 709-726    https://doi.org/10.1007/s11464-020-0847-8
RESEARCH ARTICLE
Weighted weak group inverse for Hilbert space operators
Dijana MOSIC1, Daochang ZHANG2()
1. Faculty of Sciences and Mathematics, University of Ni_s; P. O. Box 224, 18000 Ni_s; Serbia
2. College of Sciences, Northeast Electric Power University, Jilin 132012, China
 Download: PDF(277 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present the weighted weak group inverse, which is a new generalized inverse of operators between two Hilbert spaces, and we extend the notation of the weighted weak group inverse for rectangular matrices. Some characterizations and representations of the weighted weak group inverse are investigated. We also apply these results to define and study the weak group inverse for a Hilbert space operator. Using the weak group inverse, we define and characterize various binary relations.

Keywords Weak group inverse      weighted core-EP inverse      Wg-Drazin inverse      Hilbert space     
Corresponding Author(s): Daochang ZHANG   
Issue Date: 09 September 2020
 Cite this article:   
Dijana MOSIC,Daochang ZHANG. Weighted weak group inverse for Hilbert space operators[J]. Front. Math. China, 2020, 15(4): 709-726.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0847-8
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I4/709
1 O M Baksalary, G Trenkler. Core inverse of matrices. Linear Multilinear Algebra, 2010, 58(6): 681–697
https://doi.org/10.1080/03081080902778222
2 S L Campbell. Generalized Inverses of Linear Transformations. London: Pitman, 1979
3 S L. Campbell Singular Systems of Differential Equations II. Research Notes in Math, Vol 61. San Francisco: Pitman, 1982
4 A Dajić, J J. KolihaThe weighted g-Drazin inverse for operators. J Aust Math Soc, 2007, 82: 163–181
https://doi.org/10.1017/S1446788700016013
5 D E Ferreyra, F E Levis, N Thome. Maximal classes of matrices determining generalized inverses. Appl Math Comput, 2018, 333: 42–52
https://doi.org/10.1016/j.amc.2018.03.102
6 D E Ferreyra, F E Levis, N Thome. Revisiting the core EP inverse and its extension to rectangular matrices. Quaest Math, 2018, 41(2): 265–281
https://doi.org/10.2989/16073606.2017.1377779
7 D E Ferreyra, V Orquera, N Thome. A weak group inverse for rectangular matrices. Rev R Acad Cienc Exactas Fís Nat Ser A Math RACSAM, 2019, 113(4): 3727–3740
https://doi.org/10.1007/s13398-019-00674-9
8 Y Gao, J Chen. Pseudo core inverses in rings with involution. Comm Algebra, 2018, 46(1): 38–50
https://doi.org/10.1080/00927872.2016.1260729
9 Y Gao, J Chen, P. PatrícioRepresentations and properties of the W-weighted core-EP inverse. Linear Multilinear Algebra, 2018,
https://doi.org/10.1080/03081087.2018.1535573
10 J J Koliha. A generalized Drazin inverse. Glasg Math J, 1996, 38: 367–381
https://doi.org/10.1017/S0017089500031803
11 S K Mitra, P Bhimasankaram, S B Malik. Matrix Partial Orders, Shorted Operators and Applications. Series in Algebra, Vol 10. Singapore: World Scientific, 2010
https://doi.org/10.1142/7170
12 D Mosić. Core-EP pre-order of Hilbert space operators. Quaest Math, 2018, 41(5): 585–600
https://doi.org/10.2989/16073606.2017.1393021
13 D Mosić. Generalized inverses. Nić: Faculty of Sciences and Mathematics, University of Nis; 2018
14 D. MosićWeighted core-EP inverse of an operator between Hilbert spaces. Linear Multilinear Algebra, 2019, 67(2): 278–298
https://doi.org/10.1080/03081087.2017.1418824
15 D, Mosić D S Djordjević. The gDMP inverse of Hilbert space operators. J Spectr Theory, 2018, 8(2): 555–573
https://doi.org/10.4171/JST/207
16 K M Prasad, K S Mohana. Core-EP inverse. Linear Multilinear Algebra, 2014, 62(6): 792–802
https://doi.org/10.1080/03081087.2013.791690
17 J Robles, M F Martínez-Serrano, E Dopazo. On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement. Appl Math Comput, 2016, 284: 162–168
https://doi.org/10.1016/j.amc.2016.02.057
18 H Wang. Core-EP decomposition and its applications. Linear Algebra Appl, 2016, 508: 289–300
https://doi.org/10.1016/j.laa.2016.08.008
19 H Wang, J Chen. Weak group inverse. Open Math, 2018, 16: 1218–1232
https://doi.org/10.1515/math-2018-0100
20 X Wang, H, Ma P S. StanimirovićRecurrent neural network for computing the W- weighted Drazin inverse. Appl Math Comput, 2017, 300: 1–20
https://doi.org/10.1016/j.amc.2016.11.030
21 X Wang, A Yu, T Li, C Deng. Reverse order laws for the Drazin inverses. J Math Anal Appl, 2016, 444(1): 672–689
https://doi.org/10.1016/j.jmaa.2016.06.026
22 D Zhang, D Mosić, L Guo. The Drazin inverse of the sum of four matrices and its applications. Linear Multilinear Algebra, 2020, 68(1): 133–151
https://doi.org/10.1080/03081087.2018.1500518
23 D Zhang, D Mosić, T Tam. On the existence of group inverses of Peirce corner matrices. Linear Algebra Appl, 2019, 582: 482{498
https://doi.org/10.1016/j.laa.2019.07.033
24 M Zhou, J, Chen T Li, D. WangThree limit representations of the core-EP inverse. Filomat, 2018, 32(17): 5887–5894
https://doi.org/10.2298/FIL1817887Z
[1] Yuefeng GAO, Jianlong CHEN, Pedro PATR_ICIO. Weighted binary relations involving core-EP inverse[J]. Front. Math. China, 2020, 15(4): 685-699.
[2] Mehmet GÜRDAL, Ula¸s YAMANCI, Mübariz GARAYEV. Some results for operators on a model space[J]. Front. Math. China, 2018, 13(2): 287-300.
[3] Guohui SONG, Yuesheng XU. Approximation of kernel matrices by circulant matrices and its application in kernel selection methods[J]. Front. Math. China, 2010, 5(1): 123-160.
[4] LV Xuebin, HUANG Zhiyuan, WAN Jianping. Fractional Levy processes on Gel'fand triple and stochastic integration[J]. Front. Math. China, 2008, 3(2): 287-303.
[5] SUN Hongwei. Behavior of a functional in learning theory[J]. Front. Math. China, 2007, 2(3): 455-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed