Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (5) : 1483-1496    https://doi.org/10.1007/s11464-015-0480-0
RESEARCH ARTICLE
Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle
Yan ZHU1, Haiyan GUAN2, Shenglin ZHOU1()
1. School of Mathematics, South China University of Technology, Guangzhou 510640, China
2. Department of Mathematics, China Three Gorges University, Yichang 443002, China
 Download: PDF(149 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1. We prove that if D is a nontrivial 2-(v, k, λ) symmetric design with (k, λ) = 1 and G≤Aut(D) is flag-transitive with Soc(G) = An for n≥5, then D is the projective space PG2(3,2) and G = A7.

Keywords Symmetric design      automorphism group      alternating group      flagtransitive     
Corresponding Author(s): Shenglin ZHOU   
Issue Date: 12 October 2015
 Cite this article:   
Yan ZHU,Haiyan GUAN,Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle[J]. Front. Math. China, 2015, 10(5): 1483-1496.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0480-0
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I5/1483
1 H Davies. Flag-transitivity and primitivity. Discrete Math, 1987, 63: 91−93
https://doi.org/10.1016/0012-365X(87)90154-3
2 A Delandtsheer. Finite flag-transitive linear spaces with alternating socle. In: A Betten, ed. Algebraic Combinatorics and Applications. Proceedings of the Euroconference, ALCOMA, Gößeinstein, Germany, September 12−19, 1999. Berlin: Springer, 2001, 79−88
https://doi.org/10.1007/978-3-642-59448-9_5
3 P Dembowski. Finite Geometries. New York: Springer-Verlag, 1968
https://doi.org/10.1007/978-3-642-62012-6
4 U Dempwolff. Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr, 2001, 22: 191−207
https://doi.org/10.1023/A:1008373207617
5 H L Dong, S L Zhou. Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs. J Combin Des, 2011, 19: 475−483
https://doi.org/10.1002/jcd.20294
6 H L Dong, S L Zhou. Flag-transitive primitive (v, k, λ)-symmetric designs with λ at most 10 and alternating groups. J Algebra Appl, 2014, 13(6): 1450025
https://doi.org/10.1142/S021949881450025X
7 Y J Ionin, T Trung van. Symmetric designs. In: C J Colbourn, J H Dinitz, eds. Handbook of Combinatorial Designs. Boca Raton: Chapman Hall/CRC, 2007, 110−124
8 W M Kantor. Primitive permutation groups of odd degree, and application to finite projective planes. J Algebra, 1987, 106(1): 15−45
https://doi.org/10.1016/0021-8693(87)90019-6
9 M W Liebeck, C E Praeger, J Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365−383
https://doi.org/10.1016/0021-8693(87)90223-7
10 M W Liebeck, J Saxl. The primitive permutation groups of odd degree. J Lond Math Soc, 1985, 31(2): 250−264
https://doi.org/10.1112/jlms/s2-31.2.250
11 E O’Reilly Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. European J Combin, 2005, 26: 577−584
https://doi.org/10.1016/j.ejc.2004.05.003
12 E O’Reilly Regueiro. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135−148
https://doi.org/10.1016/j.jcta.2004.08.002
13 C E Praeger. The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair. Des Codes Cryptogr, 2007, 44: 115−132
https://doi.org/10.1007/s10623-007-9071-8
14 The GAP Group. GAP-Groups, Algorithms, and Programming. Version 4.4, Aachen, St. Andrews, 2004
15 D L Tian, S L Zhou. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127−141
https://doi.org/10.1002/jcd.21337
16 D L Tian, S L Zhou. Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle. J Combin Des, 2015, 23: 140−150
https://doi.org/10.1002/jcd.21385
17 H Wielandt. Finite Permutation Groups. New York: Academic Press, 1964
18 S L Zhou, H L Dong. Alternating groups and flag-transitive triplanes. Des Codes Cryptogr, 2010, 57: 117−126
https://doi.org/10.1007/s10623-009-9355-2
19 Y Zhu, D L Tian, S L Zhou. Flag-transitive point-primitive (v, k, λ) symmetric designs with λ at most 100 and alternating socle. Math Slovaca (to appear)
20 P H Zieschang. Flag transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 369−375
https://doi.org/10.1016/0021-8693(88)90027-0
[1] Wei JIN. Pentavalent vertex-transitive diameter two graphs[J]. Front. Math. China, 2017, 12(2): 377-388.
[2] Tingting JIA,Ruju ZHAO,Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra[J]. Front. Math. China, 2016, 11(4): 921-932.
[3] Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Front Math Chin, 2013, 8(4): 973-986.
[4] Liming TANG, Wende LIU. Automorphism groups of finite-dimensional special odd Hamiltonian superalgebras in prime characteristic[J]. Front Math Chin, 2012, 7(5): 907-918.
[5] Jialei CHEN, Shilin YANG. Quantum superalgebras uq(sl(m|n)) at roots of unity[J]. Front Math Chin, 2012, 7(4): 607-628.
[6] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[7] Jiayuan FU, Yongcun GAO, . Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 637-650.
[8] YANG Shilin. Automorphism groups of pointed Hopf algebras[J]. Front. Math. China, 2007, 2(2): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed