|
|
|
Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle |
Yan ZHU1, Haiyan GUAN2, Shenglin ZHOU1( ) |
1. School of Mathematics, South China University of Technology, Guangzhou 510640, China 2. Department of Mathematics, China Three Gorges University, Yichang 443002, China |
|
|
|
|
Abstract Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1. We prove that if is a nontrivial 2-(v, k, λ) symmetric design with (k, λ) = 1 and G≤Aut() is flag-transitive with Soc(G) = An for n≥5, then is the projective space PG2(3,2) and G = A7.
|
| Keywords
Symmetric design
automorphism group
alternating group
flagtransitive
|
|
Corresponding Author(s):
Shenglin ZHOU
|
|
Issue Date: 12 October 2015
|
|
| 1 |
H Davies. Flag-transitivity and primitivity. Discrete Math, 1987, 63: 91−93
https://doi.org/10.1016/0012-365X(87)90154-3
|
| 2 |
A Delandtsheer. Finite flag-transitive linear spaces with alternating socle. In: A Betten, ed. Algebraic Combinatorics and Applications. Proceedings of the Euroconference, ALCOMA, Gößeinstein, Germany, September 12−19, 1999. Berlin: Springer, 2001, 79−88
https://doi.org/10.1007/978-3-642-59448-9_5
|
| 3 |
P Dembowski. Finite Geometries. New York: Springer-Verlag, 1968
https://doi.org/10.1007/978-3-642-62012-6
|
| 4 |
U Dempwolff. Primitive rank 3 groups on symmetric designs. Des Codes Cryptogr, 2001, 22: 191−207
https://doi.org/10.1023/A:1008373207617
|
| 5 |
H L Dong, S L Zhou. Alternating groups and flag-transitive 2-(v, k, 4) symmetric designs. J Combin Des, 2011, 19: 475−483
https://doi.org/10.1002/jcd.20294
|
| 6 |
H L Dong, S L Zhou. Flag-transitive primitive (v, k, λ)-symmetric designs with λ at most 10 and alternating groups. J Algebra Appl, 2014, 13(6): 1450025
https://doi.org/10.1142/S021949881450025X
|
| 7 |
Y J Ionin, T Trung van. Symmetric designs. In: C J Colbourn, J H Dinitz, eds. Handbook of Combinatorial Designs. Boca Raton: Chapman Hall/CRC, 2007, 110−124
|
| 8 |
W M Kantor. Primitive permutation groups of odd degree, and application to finite projective planes. J Algebra, 1987, 106(1): 15−45
https://doi.org/10.1016/0021-8693(87)90019-6
|
| 9 |
M W Liebeck, C E Praeger, J Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365−383
https://doi.org/10.1016/0021-8693(87)90223-7
|
| 10 |
M W Liebeck, J Saxl. The primitive permutation groups of odd degree. J Lond Math Soc, 1985, 31(2): 250−264
https://doi.org/10.1112/jlms/s2-31.2.250
|
| 11 |
E O’Reilly Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. European J Combin, 2005, 26: 577−584
https://doi.org/10.1016/j.ejc.2004.05.003
|
| 12 |
E O’Reilly Regueiro. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135−148
https://doi.org/10.1016/j.jcta.2004.08.002
|
| 13 |
C E Praeger. The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair. Des Codes Cryptogr, 2007, 44: 115−132
https://doi.org/10.1007/s10623-007-9071-8
|
| 14 |
The GAP Group. GAP-Groups, Algorithms, and Programming. Version 4.4, Aachen, St. Andrews, 2004
|
| 15 |
D L Tian, S L Zhou. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127−141
https://doi.org/10.1002/jcd.21337
|
| 16 |
D L Tian, S L Zhou. Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle. J Combin Des, 2015, 23: 140−150
https://doi.org/10.1002/jcd.21385
|
| 17 |
H Wielandt. Finite Permutation Groups. New York: Academic Press, 1964
|
| 18 |
S L Zhou, H L Dong. Alternating groups and flag-transitive triplanes. Des Codes Cryptogr, 2010, 57: 117−126
https://doi.org/10.1007/s10623-009-9355-2
|
| 19 |
Y Zhu, D L Tian, S L Zhou. Flag-transitive point-primitive (v, k, λ) symmetric designs with λ at most 100 and alternating socle. Math Slovaca (to appear)
|
| 20 |
P H Zieschang. Flag transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 369−375
https://doi.org/10.1016/0021-8693(88)90027-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|