Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (2) : 377-388    https://doi.org/10.1007/s11464-016-0617-9
RESEARCH ARTICLE
Pentavalent vertex-transitive diameter two graphs
Wei JIN()
School of Statistics; Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China
 Download: PDF(95 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We classify the family of pentavalent vertex-transitive graphs Γ with diameter 2. Suppose that the automorphism group of Γ is transitive on the set of ordered distance 2 vertex pairs. Then we show that either Γ is distance-transitive or Γ is one of C8¯,K5K2,C5[K2],2C4¯, or K3K4 .

Keywords vertex-transitive graph      diameter      automorphism group     
Corresponding Author(s): Wei JIN   
Issue Date: 27 December 2016
 Cite this article:   
Wei JIN. Pentavalent vertex-transitive diameter two graphs[J]. Front. Math. China, 2017, 12(2): 377-388.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0617-9
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I2/377
1 Amarra C, Giudici M, Praeger C E. Quotient-complete arc-transitive graphs. European J Combin, 2012, 33: 1857–1881
https://doi.org/10.1016/j.ejc.2012.04.006
2 Amarra C, Giudici M, Praeger C E. Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group. Des Codes Cryptogr, 2013, 68: 127–139
https://doi.org/10.1007/s10623-012-9644-z
3 Brouwer A E, Cohen A M, Neumaier A. Distance-Regular Graphs. Berlin: Springer-Verlag, 1989
https://doi.org/10.1007/978-3-642-74341-2
4 Cameron P J. Permutation Groups. London Math Soc Stud Texts, Vol 45. Cambridge: Cambridge Univ Press, 1999
https://doi.org/10.1017/CBO9780511623677
5 Cheng Y, Oxley J. On weakly symmetric graphs of order twice a prime. J Combin Theory Ser B, 1987, 42: 196–211
https://doi.org/10.1016/0095-8956(87)90040-2
6 Devillers A. A classi_cation of _nite partial linear spaces with a rank 3 automorphism group of grid type. European J Combin, 2008, 29: 268–272
https://doi.org/10.1016/j.ejc.2006.09.003
7 Devillers A, Giudici M, Li C H, Pearce G, Praeger C E. On imprimitive rank 3 permutation groups. J Lond Math Soc, 2011, 84: 649–669
https://doi.org/10.1112/jlms/jdr009
8 Devillers A, Jin W, Li C H, Praeger C E. Local 2-geodesic transitivity and clique graphs. J Combin Theory Ser A, 2013, 120: 500–508
https://doi.org/10.1016/j.jcta.2012.10.004
9 Devillers A, Jin W, Li C H, Praeger C E. On normal 2-geodesic transitive Cayley graphs. J Algebraic Combin, 2014, 39: 903–918
https://doi.org/10.1007/s10801-013-0472-7
10 0. Dixon J D, Mortimer B. Permutation Groups. New York: Springer, 1996
https://doi.org/10.1007/978-1-4612-0731-3
11 Gorenstein D. Finite Simple Groups|An Introduction to Their Classi_cation. New York: Plenum Press, 1982
12 Hestenes M D, Higman D G. Rank 3 groups and strongly regular graphs. SIAM-AMS Proc, 1971, 4: 141–159
13 Jin W. Vertex-transitive graphs of diameter 2. Preprint
14 Kov_acs I. Classifying arc-transitive circulants. J Algebraic Combin, 2004, 20: 353–358
https://doi.org/10.1023/B:JACO.0000048519.27295.3b
15 Kwak J H, Oh J M. One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer. Acta Math Sin (Engl Ser), 2006, 22: 1305–1320
https://doi.org/10.1007/s10114-005-0752-9
16 Li C H. Permutation groups with a cyclic regular subgroup and arc transitive circulants. J Algebraic Combin, 2005, 21: 131–136
https://doi.org/10.1007/s10801-005-6903-3
17 Li C H, Pan J M. Finite 2-arc-transitive abelian Cayley graphs. European J Combin, 2008, 29: 148–158
https://doi.org/10.1016/j.ejc.2006.12.001
18 Mckay B, Praeger C E. Vertex-transitive graphs which are not Cayley graphs. J Aust Math Soc (A), 1994, 56: 53–63
https://doi.org/10.1017/S144678870003473X
19 Morris J, Praeger C E, Spiga P. Strongly regular edge-transitive graphs. Ars Math Contemp, 2009, 2: 137–155
20 Wang R J, Xu M Y. A classi_cation of symmetric graphs of order 3p:J Combin Theory Ser B, 1993, 58: 197–216
https://doi.org/10.1006/jctb.1993.1037
21 Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964
[1] Cunxiang DUAN, Ligong WANG, Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
[2] Tingting JIA,Ruju ZHAO,Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra[J]. Front. Math. China, 2016, 11(4): 921-932.
[3] Yan ZHU,Haiyan GUAN,Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle[J]. Front. Math. China, 2015, 10(6): 1483-1496.
[4] Yue HE. Sharp lower bound of spectral gap for Schrödinger operator and related results[J]. Front. Math. China, 2015, 10(6): 1283-1312.
[5] Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Front Math Chin, 2013, 8(4): 973-986.
[6] Liming TANG, Wende LIU. Automorphism groups of finite-dimensional special odd Hamiltonian superalgebras in prime characteristic[J]. Front Math Chin, 2012, 7(5): 907-918.
[7] Jialei CHEN, Shilin YANG. Quantum superalgebras uq(sl(m|n)) at roots of unity[J]. Front Math Chin, 2012, 7(4): 607-628.
[8] Hong SHEN, Hongping CAO, Guiyun CHEN. Characterization of automorphism groups of sporadic simple groups[J]. Front Math Chin, 2012, 7(3): 513-519.
[9] Jiayuan FU, Yongcun GAO, . Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 637-650.
[10] YANG Shilin. Automorphism groups of pointed Hopf algebras[J]. Front. Math. China, 2007, 2(2): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed