|
|
|
Pentavalent vertex-transitive diameter two graphs |
Wei JIN( ) |
| School of Statistics; Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China |
|
|
|
|
Abstract We classify the family of pentavalent vertex-transitive graphs with diameter 2. Suppose that the automorphism group of is transitive on the set of ordered distance 2 vertex pairs. Then we show that either is distance-transitive or is one of .
|
| Keywords
vertex-transitive graph
diameter
automorphism group
|
|
Corresponding Author(s):
Wei JIN
|
|
Issue Date: 27 December 2016
|
|
| 1 |
Amarra C, Giudici M, Praeger C E. Quotient-complete arc-transitive graphs. European J Combin, 2012, 33: 1857–1881
https://doi.org/10.1016/j.ejc.2012.04.006
|
| 2 |
Amarra C, Giudici M, Praeger C E. Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group. Des Codes Cryptogr, 2013, 68: 127–139
https://doi.org/10.1007/s10623-012-9644-z
|
| 3 |
Brouwer A E, Cohen A M, Neumaier A. Distance-Regular Graphs. Berlin: Springer-Verlag, 1989
https://doi.org/10.1007/978-3-642-74341-2
|
| 4 |
Cameron P J. Permutation Groups. London Math Soc Stud Texts, Vol 45. Cambridge: Cambridge Univ Press, 1999
https://doi.org/10.1017/CBO9780511623677
|
| 5 |
Cheng Y, Oxley J. On weakly symmetric graphs of order twice a prime. J Combin Theory Ser B, 1987, 42: 196–211
https://doi.org/10.1016/0095-8956(87)90040-2
|
| 6 |
Devillers A. A classi_cation of _nite partial linear spaces with a rank 3 automorphism group of grid type. European J Combin, 2008, 29: 268–272
https://doi.org/10.1016/j.ejc.2006.09.003
|
| 7 |
Devillers A, Giudici M, Li C H, Pearce G, Praeger C E. On imprimitive rank 3 permutation groups. J Lond Math Soc, 2011, 84: 649–669
https://doi.org/10.1112/jlms/jdr009
|
| 8 |
Devillers A, Jin W, Li C H, Praeger C E. Local 2-geodesic transitivity and clique graphs. J Combin Theory Ser A, 2013, 120: 500–508
https://doi.org/10.1016/j.jcta.2012.10.004
|
| 9 |
Devillers A, Jin W, Li C H, Praeger C E. On normal 2-geodesic transitive Cayley graphs. J Algebraic Combin, 2014, 39: 903–918
https://doi.org/10.1007/s10801-013-0472-7
|
| 10 |
0. Dixon J D, Mortimer B. Permutation Groups. New York: Springer, 1996
https://doi.org/10.1007/978-1-4612-0731-3
|
| 11 |
Gorenstein D. Finite Simple Groups|An Introduction to Their Classi_cation. New York: Plenum Press, 1982
|
| 12 |
Hestenes M D, Higman D G. Rank 3 groups and strongly regular graphs. SIAM-AMS Proc, 1971, 4: 141–159
|
| 13 |
Jin W. Vertex-transitive graphs of diameter 2. Preprint
|
| 14 |
Kov_acs I. Classifying arc-transitive circulants. J Algebraic Combin, 2004, 20: 353–358
https://doi.org/10.1023/B:JACO.0000048519.27295.3b
|
| 15 |
Kwak J H, Oh J M. One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer. Acta Math Sin (Engl Ser), 2006, 22: 1305–1320
https://doi.org/10.1007/s10114-005-0752-9
|
| 16 |
Li C H. Permutation groups with a cyclic regular subgroup and arc transitive circulants. J Algebraic Combin, 2005, 21: 131–136
https://doi.org/10.1007/s10801-005-6903-3
|
| 17 |
Li C H, Pan J M. Finite 2-arc-transitive abelian Cayley graphs. European J Combin, 2008, 29: 148–158
https://doi.org/10.1016/j.ejc.2006.12.001
|
| 18 |
Mckay B, Praeger C E. Vertex-transitive graphs which are not Cayley graphs. J Aust Math Soc (A), 1994, 56: 53–63
https://doi.org/10.1017/S144678870003473X
|
| 19 |
Morris J, Praeger C E, Spiga P. Strongly regular edge-transitive graphs. Ars Math Contemp, 2009, 2: 137–155
|
| 20 |
Wang R J, Xu M Y. A classi_cation of symmetric graphs of order 3p:J Combin Theory Ser B, 1993, 58: 197–216
https://doi.org/10.1006/jctb.1993.1037
|
| 21 |
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|