Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (6) : 1105-1120    https://doi.org/10.1007/s11464-020-0879-0
RESEARCH ARTICLE
Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)
Cunxiang DUAN1,2, Ligong WANG1,2(), Peng XIAO1,2,3
1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China
2. Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi'an 710129, China
3. College of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
 Download: PDF(313 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let S(m; d; k) be the set of k-uniform supertrees with m edges and diameter d; and S1(m; d; k) be the k-uniform supertree obtained from a loose path u1; e1; u2; e2,..., ud; ed; ud+1 with length d by attaching md edges at vertex ud/2+1: In this paper, we mainly determine S1(m; d; k) with the largest signless Laplacian spectral radius in S(m; d; k) for 3≤dm –1: We also determine the supertree with the second largest signless Laplacian spectral radius in S(m; 3; k): Furthermore, we determine the unique k-uniform supertree with the largest signless Laplacian spectral radius among all k-uniform supertrees with n vertices and pendent edges (vertices).

Keywords Signless Laplacian spectral radius      supertree      hypertree      diameter      pendent edges      pendent vertices     
Corresponding Author(s): Ligong WANG   
Issue Date: 05 February 2021
 Cite this article:   
Cunxiang DUAN,Ligong WANG,Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0879-0
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I6/1105
1 A E Brouwer, W H Haemers. Spectra of Graphs. New York: Springer, 2012
https://doi.org/10.1007/978-1-4614-1939-6
2 J Cooper, A Dudtle. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
3 D Cvertković, P Rowlinson, S Simić. An Introduction to the Theory of Graph Spectra. London Math Soc Stud Texts, Vol 75. Cambridge: Cambridge Univ Press, 2010
4 C X Duan, L G Wang, P, Xiao X H Li. The (signless Laplacian) spectral radius (of subgraphs) of uniform hypergraphs. Filomat, 2019, 33: 4733–4745
https://doi.org/10.2298/FIL1915733D
5 J M Guo, J Y Shao. On the spectral radius of trees with fixed diameter. Linear Algebra Appl, 2006, 413: 131–147
https://doi.org/10.1016/j.laa.2005.08.008
6 S G, Guo G H Xu, Y G Chen. The spectral radius of trees with nvertices and diameter d: Adv Math (China), 2005, 6: 683–692 (in Chinese)
7 S L Hu, L Q Qi, J Y. ShaoCored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998
https://doi.org/10.1016/j.laa.2013.08.028
8 H F Li, J Zhou, C J. BuPrincipal eigenvectors and spectral radii of uniform hyper- graphs. Linear Algebra Appl, 2018, 544: 273–285
https://doi.org/10.1016/j.laa.2018.01.017
9 H H Li, J Y Shao, L Q Qi. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
10 L H Lim. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP 05). 2005, 129–132
11 L H Lim. Eigenvalues of tensors and some very basic spectral hypergraph theory. In: Matrix Computations and Scientific Computing Seminar, April 16, 2008
12 H Y Lin, B Mo, B, Zhou W M Weng. Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs. Appl Math Comput, 2016, 285: 217–227
https://doi.org/10.1016/j.amc.2016.03.016
13 L L Liu, L Y Kang, X Y Yuan. On the principal eigenvector of uniform hypergraphs. Linear Algebra Appl, 2016, 511: 430–446
https://doi.org/10.1016/j.laa.2016.09.015
14 L Y Lu, S D Man. Connected hypergraphs with small spectral radius. Linear Algebra Appl, 2016, 509: 206–227
https://doi.org/10.1016/j.laa.2016.07.013
15 C Ouyang, L Q Qi, X Y Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear Algebra Appl, 2017, 527: 141–163
https://doi.org/10.1016/j.laa.2017.04.008
16 L Q Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
17 L Q Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
https://doi.org/10.1016/j.laa.2013.03.015
18 L Q Qi. H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci, 2014, 12: 1045–1064
https://doi.org/10.4310/CMS.2014.v12.n6.a3
19 P Xiao, L G Wang. The maximum spectral radius of uniform hypergraphs with given number of pendant edges. Linear Multilinear Algebra, 2019, 67: 1392–1403
https://doi.org/10.1080/03081087.2018.1453471
20 P Xiao, L G Wang, Y F Du. The first two largest spectral radii of uniform supertrees with given diameter. Linear Algebra Appl, 2018, 536: 103–119
https://doi.org/10.1016/j.laa.2017.09.009
21 P Xiao, L G Wang, Y Lu. The maximum spectral radii of uniform supertrees with given degree sequences. Linear Algebra Appl, 2017, 523: 33–45
https://doi.org/10.1016/j.laa.2017.02.018
22 X Y Yuan, J Y, Shao H Y Shan. Ordering of some uniform supertrees with larger spectral radii. Linear Algebra Appl, 2016, 495: 206{222
https://doi.org/10.1016/j.laa.2016.01.031
23 J J Yue, L P Zhang, M Lu, L Q Qi. The adjacency and signless Laplacian spectral radius of cored hypergraphs and power hypergraphs. J Oper Res Soc China, 2017, 5: 27–43
https://doi.org/10.1007/s40305-016-0141-3
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[3] Lei ZHANG, An CHANG. Spectral radius of r-uniform supertrees with perfect matchings[J]. Front. Math. China, 2018, 13(6): 1489-1499.
[4] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[5] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[6] Wei JIN. Pentavalent vertex-transitive diameter two graphs[J]. Front. Math. China, 2017, 12(2): 377-388.
[7] Yue HE. Sharp lower bound of spectral gap for Schrödinger operator and related results[J]. Front. Math. China, 2015, 10(6): 1283-1312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed