|
|
|
Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices) |
Cunxiang DUAN1,2, Ligong WANG1,2( ), Peng XIAO1,2,3 |
1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China 2. Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi'an 710129, China 3. College of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China |
|
|
|
|
Abstract Let (m; d; k) be the set of k-uniform supertrees with m edges and diameter d; and S1(m; d; k) be the k-uniform supertree obtained from a loose path u1; e1; u2; e2,..., ud; ed; ud+1 with length d by attaching m — d edges at vertex : In this paper, we mainly determine S1(m; d; k) with the largest signless Laplacian spectral radius in (m; d; k) for 3≤d≤m –1: We also determine the supertree with the second largest signless Laplacian spectral radius in (m; 3; k): Furthermore, we determine the unique k-uniform supertree with the largest signless Laplacian spectral radius among all k-uniform supertrees with n vertices and pendent edges (vertices).
|
| Keywords
Signless Laplacian spectral radius
supertree
hypertree
diameter
pendent edges
pendent vertices
|
|
Corresponding Author(s):
Ligong WANG
|
|
Issue Date: 05 February 2021
|
|
| 1 |
A E Brouwer, W H Haemers. Spectra of Graphs. New York: Springer, 2012
https://doi.org/10.1007/978-1-4614-1939-6
|
| 2 |
J Cooper, A Dudtle. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
|
| 3 |
D Cvertković, P Rowlinson, S Simić. An Introduction to the Theory of Graph Spectra. London Math Soc Stud Texts, Vol 75. Cambridge: Cambridge Univ Press, 2010
|
| 4 |
C X Duan, L G Wang, P, Xiao X H Li. The (signless Laplacian) spectral radius (of subgraphs) of uniform hypergraphs. Filomat, 2019, 33: 4733–4745
https://doi.org/10.2298/FIL1915733D
|
| 5 |
J M Guo, J Y Shao. On the spectral radius of trees with fixed diameter. Linear Algebra Appl, 2006, 413: 131–147
https://doi.org/10.1016/j.laa.2005.08.008
|
| 6 |
S G, Guo G H Xu, Y G Chen. The spectral radius of trees with nvertices and diameter d: Adv Math (China), 2005, 6: 683–692 (in Chinese)
|
| 7 |
S L Hu, L Q Qi, J Y. ShaoCored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998
https://doi.org/10.1016/j.laa.2013.08.028
|
| 8 |
H F Li, J Zhou, C J. BuPrincipal eigenvectors and spectral radii of uniform hyper- graphs. Linear Algebra Appl, 2018, 544: 273–285
https://doi.org/10.1016/j.laa.2018.01.017
|
| 9 |
H H Li, J Y Shao, L Q Qi. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
|
| 10 |
L H Lim. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP 05). 2005, 129–132
|
| 11 |
L H Lim. Eigenvalues of tensors and some very basic spectral hypergraph theory. In: Matrix Computations and Scientific Computing Seminar, April 16, 2008
|
| 12 |
H Y Lin, B Mo, B, Zhou W M Weng. Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs. Appl Math Comput, 2016, 285: 217–227
https://doi.org/10.1016/j.amc.2016.03.016
|
| 13 |
L L Liu, L Y Kang, X Y Yuan. On the principal eigenvector of uniform hypergraphs. Linear Algebra Appl, 2016, 511: 430–446
https://doi.org/10.1016/j.laa.2016.09.015
|
| 14 |
L Y Lu, S D Man. Connected hypergraphs with small spectral radius. Linear Algebra Appl, 2016, 509: 206–227
https://doi.org/10.1016/j.laa.2016.07.013
|
| 15 |
C Ouyang, L Q Qi, X Y Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear Algebra Appl, 2017, 527: 141–163
https://doi.org/10.1016/j.laa.2017.04.008
|
| 16 |
L Q Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
|
| 17 |
L Q Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
https://doi.org/10.1016/j.laa.2013.03.015
|
| 18 |
L Q Qi. H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci, 2014, 12: 1045–1064
https://doi.org/10.4310/CMS.2014.v12.n6.a3
|
| 19 |
P Xiao, L G Wang. The maximum spectral radius of uniform hypergraphs with given number of pendant edges. Linear Multilinear Algebra, 2019, 67: 1392–1403
https://doi.org/10.1080/03081087.2018.1453471
|
| 20 |
P Xiao, L G Wang, Y F Du. The first two largest spectral radii of uniform supertrees with given diameter. Linear Algebra Appl, 2018, 536: 103–119
https://doi.org/10.1016/j.laa.2017.09.009
|
| 21 |
P Xiao, L G Wang, Y Lu. The maximum spectral radii of uniform supertrees with given degree sequences. Linear Algebra Appl, 2017, 523: 33–45
https://doi.org/10.1016/j.laa.2017.02.018
|
| 22 |
X Y Yuan, J Y, Shao H Y Shan. Ordering of some uniform supertrees with larger spectral radii. Linear Algebra Appl, 2016, 495: 206{222
https://doi.org/10.1016/j.laa.2016.01.031
|
| 23 |
J J Yue, L P Zhang, M Lu, L Q Qi. The adjacency and signless Laplacian spectral radius of cored hypergraphs and power hypergraphs. J Oper Res Soc China, 2017, 5: 27–43
https://doi.org/10.1007/s40305-016-0141-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|