Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (6) : 1393-1408    https://doi.org/10.1007/s11464-017-0636-1
RESEARCH ARTICLE
Ordering uniform supertrees by their spectral radii
Xiying YUAN1(), Xuelian SI1, Li ZHANG2
1. Department of Mathematics, Shanghai University, Shanghai 200444, China
2. School of Statistics and Mathematics, Shanghai Finance University, Shanghai 201209, China
 Download: PDF(173 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A supertree is a connected and acyclic hypergraph. For a hypergraph H,the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H.By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on nvertices, which extends the known result.

Keywords Uniform hypergraph      adjacency tensor      uniform supertree      spectral radius     
Corresponding Author(s): Xiying YUAN   
Issue Date: 27 November 2017
 Cite this article:   
Xiying YUAN,Xuelian SI,Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0636-1
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I6/1393
1 BergeC. Hypergraph: Combinatorics of Finite sets.Amsterdam: Elsevier, 1973
2 ChangA, HuangQ. Ordering trees by their largest eigenvalues.Linear Algebra Appl, 2003, 370: 175–184
https://doi.org/10.1016/S0024-3795(03)00384-7
3 ChangK-C, PearsonK, ZhangT. Perron-Frobenius theorem for nonnegative tensors.Commun Math Sci, 2008, 6: 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
4 CooperJ, DutleA. Spectra of uniform hypergraphs.Linear Algebra Appl, 2012, 436: 3268–3299
https://doi.org/10.1016/j.laa.2011.11.018
5 FriedlandS, GaubertA, HanL. Perron-Frobenius theorems for nonnegative multilinear forms and extensions.Linear Algebra Appl, 2013, 438: 738–749
https://doi.org/10.1016/j.laa.2011.02.042
6 HofmeisterM. On the two largest eigenvalues of trees.Linear Algebra Appl, 1997, 260: 43–59
https://doi.org/10.1016/S0024-3795(97)80004-3
7 HuS, QiL, ShaoJ. Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues.Linear Algebra Appl, 2013, 439: 2980–2998
https://doi.org/10.1016/j.laa.2013.08.028
8 LiH, ShaoJ, QiL. The extremal spectral radii of k-uniform supertrees.J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
9 LuL, ManS. Connected hypergraphs with small spectral radius.Linear Algebra Appl, 2016, 509: 206–227
https://doi.org/10.1016/j.laa.2016.07.013
10 QiL. Eigenvalues of a real supersymmetric tensor.J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
11 YangY, YangQ. On some properties of nonnegative weakly irreducible tensors.arXiv: 1111.0713v2
12 YuanX, ShaoJ, ShanH. Ordering of some uniform supertrees with larger spectral radii.Linear Algebra Appl, 2016, 495: 206–222
https://doi.org/10.1016/j.laa.2016.01.031
13 ZhouJ, SunL, WangW, BuC. Some spectral properties of uniform hypergraphs.Electron J Combin, 2014, 21(4): P4.24
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Cunxiang DUAN, Ligong WANG, Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
[3] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[4] Gang WANG, Yuan ZHANG, YijuWANG WANG. Brauer-type bounds for Hadamard product of nonnegative tensors[J]. Front. Math. China, 2020, 15(3): 555-570.
[5] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[6] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[7] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[8] Lei ZHANG, An CHANG. Spectral radius of r-uniform supertrees with perfect matchings[J]. Front. Math. China, 2018, 13(6): 1489-1499.
[9] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
[10] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[11] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
[12] Junjie YUE,Liping ZHANG,Mei LU. Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths[J]. Front. Math. China, 2016, 11(3): 623-645.
[13] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[14] Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors[J]. Front Math Chin, 2013, 8(1): 63-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed