Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (3) : 555-570    https://doi.org/10.1007/s11464-020-0840-2
RESEARCH ARTICLE
Brauer-type bounds for Hadamard product of nonnegative tensors
Gang WANG, Yuan ZHANG, YijuWANG WANG()
School of Management Science, Qufu Normal University, Rizhao 276826, China
 Download: PDF(280 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we establish some Brauer-type bounds for the spectral radius of Hadamard product of two nonnegative tensors based on Brauer-type inclusion set, which are shown to be sharper than the existing bounds established in the literature. The validity of the obtained results is theoretically and numerically tested.

Keywords Hadamard product      nonnegative tensor      Brauer-type inclusion set      spectral radius     
Issue Date: 21 July 2020
 Cite this article:   
Gang WANG,Yuan ZHANG,YijuWANG WANG. Brauer-type bounds for Hadamard product of nonnegative tensors[J]. Front. Math. China, 2020, 15(3): 555-570.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0840-2
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I3/555
1 L Bloy, R Verma. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas D, Axel L, Fichtinger G, Székely G, eds. Medical Image Computing and Computer-Assisted Intervention|MICCAI 2008, Part I. Lecture Notes in Comput Sci, Vol 5241. Berlin: Springer, 2008, 1–8
https://doi.org/10.1007/978-3-540-85988-8_1
2 C Bu, X Jin, H Li, C Deng. Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl, 2017, 512: 234–248
https://doi.org/10.1016/j.laa.2016.09.041
3 M Che, Y Wei. Theory and Computation of Complex Tensors and its Applications. Singapore: Springer, 2020
https://doi.org/10.1007/978-981-15-2059-4
4 H Chen, L Qi, Y Song. Column suficient tensors and tensor complementarity problems. Front Math China, 2018, 13: 255–276
https://doi.org/10.1007/s11464-018-0681-4
5 W Ding, Y Wei. Solving multi-linear systems with M-tensors. J Sci Comput, 2016, 68: 689–715
https://doi.org/10.1007/s10915-015-0156-7
6 F Fang. Bounds on eigenvalues of Hadamard product and the Fan product of matrices. Linear Algebra Appl, 2007, 425: 7–15
https://doi.org/10.1016/j.laa.2007.03.024
7 S Friedland, S Gaubert, L Han. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738–749
https://doi.org/10.1016/j.laa.2011.02.042
8 L Gao, Z Cao, G Wang. Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching. Nonlinear Anal Hybrid Syst, 2019, 34: 248–263
9 L Gao, F Luo, Z Yan. Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach. Internat J Control, 2019, 92: 1381–1392
https://doi.org/10.1080/00207179.2017.1396360
10 R Horn, C Johnson. Topics in Matrix Analysis. Cambridge: Cambridge Univ Press, 1985
https://doi.org/10.1017/CBO9780511810817
11 S Hu, Z Huang, C Ling, L Qi. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531
https://doi.org/10.1016/j.jsc.2012.10.001
12 S Hu, Z Huang, L Qi. Strictly nonnegative tensors and nonnegative tensor partition. Sci China Math, 2014, 57: 181–195
https://doi.org/10.1007/s11425-013-4752-4
13 R Huang. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl, 2008, 428: 1551–1559
https://doi.org/10.1016/j.laa.2007.10.001
14 C Jutten, J Herault. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1–10
https://doi.org/10.1016/0165-1684(91)90079-X
15 T Kolda, B Bader. Tensor decompositions and applications. SIAM Review, 2009, 51:455–500
https://doi.org/10.1137/07070111X
16 C Li, Y Li, X Kong. New eigenvalue inclusion sets for tensors. Numer Linear Algebra Appl, 2014, 21: 39–50
https://doi.org/10.1002/nla.1858
17 Y Li, F Chen, D Wang. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl, 2009, 430: 1423–1431
https://doi.org/10.1016/j.laa.2008.11.002
18 L H Lim. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, 2005. 2005, 129–132
19 Q Ni, L Qi, F Wang. An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE Trans Automat Control, 2008, 53: 1096–1107
https://doi.org/10.1109/TAC.2008.923679
20 L Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
21 L Qi. Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun Math Sci, 2015, 13: 113–125
https://doi.org/10.4310/CMS.2015.v13.n1.a6
22 L Qi, Z Luo. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
https://doi.org/10.1137/1.9781611974751
23 L Sun, B Zheng, J Zhou, H Yan. Some inequalities for the Hadamard product of tensors. Linear Multilinear Algebra, 2018, 66: 1199–1214
https://doi.org/10.1080/03081087.2017.1346060
24 G Wang, Y Wang, L Liu. Bound estimations on the eigenvalues for Fan product of M-tensors. Taiwanese J Math, 2019, 23: 751–766
https://doi.org/10.11650/tjm/180905
25 G Wang, Y Wang, Y Zhang. Some inequalities for the Fan product of M-tensors. J Inequal Appl, 2018, 2018: 257
https://doi.org/10.1186/s13660-018-1853-1
26 G Wang, Y Wang, Y Zhang. Brauer-type upper bounds for Z-Spectral radius of weakly symmetric nonnegative tensors. J Math Inequal, 2019, 13(4): 1105–1116
https://doi.org/10.7153/jmi-2019-13-78
27 G Wang, G Zhou, L Caccetta. Z-eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22: 187–198
https://doi.org/10.3934/dcdsb.2017009
28 G Wang, G Zhou, L Caccetta. Sharp Brauer-type eigenvalue inclusion theorems for tensors. Pac J Optim, 2018, 14: 227–244
29 X Wang, H Chen, Y Wang. Solution structures of tensor complementarity problem. Front Math China, 2018, 13: 935–945
https://doi.org/10.1007/s11464-018-0675-2
30 Y Wang, K Zhang, H Sun. Criteria for strong H-tensors. Front Math China, 2016, 11: 577–592
https://doi.org/10.1007/s11464-016-0525-z
31 Y Wang, G Zhou, L Caccetta. Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer Linear Algebra Appl, 2015, 22: 1059–1076
https://doi.org/10.1002/nla.1996
32 Y Wang, G Zhou, L Caccetta. Nonsingular H-tensor and its criteria. J Ind Manag Optim, 2016, 12: 1173–1186
https://doi.org/10.3934/jimo.2016.12.1173
33 Q Yang, Y Yang. Further results for Perron-Frobenius theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236–1250
https://doi.org/10.1137/100813671
34 D Zhou, G Chen, G Wu, X Zhang. On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl, 2013, 438: 1415–1426
https://doi.org/10.1016/j.laa.2012.09.013
35 G Zhou, L Qi, S Wu. Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Front Math China, 2013, 8: 155{168
https://doi.org/10.1007/s11464-012-0268-4
36 G Zhou, G Wang, L Qi, M Alqahtani. A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer Linear Algebra Appl, 2018, 25(2): e2134
https://doi.org/10.1002/nla.2134
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Cunxiang DUAN, Ligong WANG, Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
[3] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[4] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[5] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[6] Lei ZHANG, An CHANG. Spectral radius of r-uniform supertrees with perfect matchings[J]. Front. Math. China, 2018, 13(6): 1489-1499.
[7] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
[8] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[9] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[10] Dongmei CHEN, Zhibing CHEN, Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
[11] Haibin CHEN, Yiju WANG. On computing minimal H-eigenvalue of sign-structured tensors[J]. Front. Math. China, 2017, 12(6): 1289-1302.
[12] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[13] Xutao LI,Michael K. NG. Solving sparse non-negative tensor equations: algorithms and applications[J]. Front. Math. China, 2015, 10(3): 649-680.
[14] Yisheng SONG, Liqun QI. Positive eigenvalue-eigenvector of nonlinear positive mappings[J]. Front Math Chin, 2014, 9(1): 181-199.
[15] Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors[J]. Front Math Chin, 2013, 8(1): 63-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed