Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (6) : 1279-1288    https://doi.org/10.1007/s11464-017-0626-3
RESEARCH ARTICLE
Spectral radius of uniform hypergraphs and degree sequences
Dongmei CHEN1, Zhibing CHEN1, Xiao-Dong ZHANG2()
1. College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
2. School of Mathematical Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(141 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present several upper bounds for the adjacency and signless Laplacian spectral radii of uniform hypergraphs in terms of degree sequences.

Keywords Spectral radius      uniform hypergraph      degree sequence     
Corresponding Author(s): Xiao-Dong ZHANG   
Issue Date: 27 November 2017
 Cite this article:   
Dongmei CHEN,Zhibing CHEN,Xiao-Dong ZHANG. Spectral radius of uniform hypergraphs and degree sequences[J]. Front. Math. China, 2017, 12(6): 1279-1288.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0626-3
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I6/1279
1 ChangK-C, QiL, ZhangT. A survey on the spectral theory of nonnegative tensors.Numer Linear Algebra Appl, 2013, 20: 891–912
https://doi.org/10.1002/nla.1902
2 CooperJ, DutleA. Spectra of uniform hypergraphs. Linear Algebra Appl,2012, 436: 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
3 FriedlandS, GaubertS, HanL. Perron-Frobenius theorems for nonnegative multilinear forms and extension.Linear Algebra Appl, 2013, 438: 738–749
https://doi.org/10.1016/j.laa.2011.02.042
4 KhanM, FanY-Z. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs.Linear Algebra Appl, 2015, 480: 93–106
https://doi.org/10.1016/j.laa.2015.04.005
5 KhanM, FanY-Z, TanY-Y. The H-spectra of a class of generalized power hypergraphs.Discrete Math, 2016, 339: 1682–1689
https://doi.org/10.1016/j.disc.2016.01.016
6 LiC, ChenZ, LiY. A new eigenvalue inclusion set for tensors and its applications.Linear Algebra Appl,2015, 481: 36–53
https://doi.org/10.1016/j.laa.2015.04.023
7 LiH-H, ShaoJ-Y, QiL. The extremal spectral radii of k-uniform supertrees.J Comb Optim, 2016, 32: 741–764
https://doi.org/10.1007/s10878-015-9896-4
8 LinH-Y, ZhouB, MoB. Upper bounds for H- and Z-spectral radii of uniform hypergraphs.Linear Algebra Appl, 2016, 510: 205–211
https://doi.org/10.1016/j.laa.2016.08.009
9 LovászL, PelikánJ, VesztergombiK. Discrete Mathematics: Elementary and Beyond.Undergrad Texts Math. New York: Springer-Verlag, 2003
https://doi.org/10.1007/b97469
10 PearsonK, ZhangT. On spectral hypergraph theory of the adjacency tensor.Graphs Combin,2014, 30: 1233–1248
https://doi.org/10.1007/s00373-013-1340-x
11 QiL. Eigenvalues of a real supersymmetric tensor.J Symbol Comput,2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
12 QiL. H-eigenvalues of Laplacian and signless Laplacian tensors.Commun Math Sci,2014, 12: 1045–1064
https://doi.org/10.4310/CMS.2014.v12.n6.a3
13 QiL, ShaoJ-Y, WangQ. Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian eigenvalues.Linear Algebra Appl,2014, 443: 215–227
https://doi.org/10.1016/j.laa.2013.11.008
14 ShaoJ-Y. A general product of tensors with applications.Linear Algebra Appl,2012, 439: 2350–2366
https://doi.org/10.1016/j.laa.2013.07.010
15 YangY, YangQ. Further results for Perron-Frobenius theorem for nonnegative tensors.SIAM J Matrix Anal Appl, 2010, 31: 2517–2530
https://doi.org/10.1137/090778766
16 YuanX, QiL, ShaoJ-Y. The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs.Linear Algebra Appl, 2016, 490: 18–30
https://doi.org/10.1016/j.laa.2015.10.013
17 YuanX, ShaoJ-Y, ShanH-Y. Ordering of some uniform supertrees with larger spectral radii.Linear Algebra Appl, 2016, 495: 206–222
https://doi.org/10.1016/j.laa.2016.01.031
18 YuanX, ZhangM, LuM. Some upper bounds on the eigenvalues of uniform hypergraphs.Linear Algebra Appl, 2015, 484: 540–549
https://doi.org/10.1016/j.laa.2015.06.023
[1] Wen-Huan WANG, Ling YUAN. Uniform supertrees with extremal spectral radii[J]. Front. Math. China, 2020, 15(6): 1211-1229.
[2] Cunxiang DUAN, Ligong WANG, Peng XIAO. Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices)[J]. Front. Math. China, 2020, 15(6): 1105-1120.
[3] Gang WANG, Yuan ZHANG, YijuWANG WANG. Brauer-type bounds for Hadamard product of nonnegative tensors[J]. Front. Math. China, 2020, 15(3): 555-570.
[4] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[5] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[6] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[7] Lei ZHANG, An CHANG. Spectral radius of r-uniform supertrees with perfect matchings[J]. Front. Math. China, 2018, 13(6): 1489-1499.
[8] Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors[J]. Front. Math. China, 2018, 13(6): 1427-1445.
[9] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[10] Xiying YUAN, Xuelian SI, Li ZHANG. Ordering uniform supertrees by their spectral radii[J]. Front. Math. China, 2017, 12(6): 1393-1408.
[11] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[12] Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors[J]. Front Math Chin, 2013, 8(1): 63-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed