Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (1) : 155-172    https://doi.org/10.1007/s11464-015-0508-5
RESEARCH ARTICLE
Sharp estimates for Hardy operators on Heisenberg group
Qingyan WU,Zunwei FU()
Department of Mathematics, Linyi University, Linyi 276005, China
 Download: PDF(164 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the setting of the Heisenberg group, based on the rotation method, we obtain the sharp (p, p) estimate for the Hardy operator. It will be shown that the norm of the Hardy operator on Lp(Hn) is still p/(p−1). This goes some way to imply that the Lp norms of the Hardy operator are the same despite the domains are intervals on ℝ, balls in ℝn, or ‘ellipsoids’ on the Heisenberg group Hn. By constructing a special function, we find the best constant in the weak type (1,1) inequality for the Hardy operator. Using the translation approach, we establish the boundedness for the Hardy operator from H1 to L1. Moreover, we describe the difference between Mp weights and Ap weights and obtain the characterizations of such weights using the weighted Hardy inequalities.

Keywords Heisenberg group      Hardy operator      Mp weight     
Corresponding Author(s): Zunwei FU   
Issue Date: 02 December 2015
 Cite this article:   
Qingyan WU,Zunwei FU. Sharp estimates for Hardy operators on Heisenberg group[J]. Front. Math. China, 2016, 11(1): 155-172.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0508-5
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I1/155
1 Bényi Á, Oh T. Best constants for certain multilinear integral operators. J Inequal Appl, 2006, Art ID 28582, 12pp
2 Calderón A P. Inequalities for the maximal function relative to a metric. Studia Math, 1976, 57: 297–306
3 Carcía-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North Holland Math Studies, Vol 116. Amsterdam: North-Holland Publishing Co, 1985
4 Chirst M, Grafakos L. Best constants for two non-convolution inequalities. Proc Amer Math Soc, 1995, 123: 1687–1693
https://doi.org/10.1090/S0002-9939-1995-1239796-6
5 Coulhon T, Müller D, Zienkiewicz J. About Riesz transforms on the Heisenberg groups. Math Ann, 1996, 305(2): 369–379
https://doi.org/10.1007/BF01444227
6 Drábek P, Heinig H P, Kufner A. Higher dimensional Hardy inequality. Internat Ser Numer Math, 1997, 123: 3–16
https://doi.org/10.1007/978-3-0348-8942-1_1
7 Faris W. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43: 365–373
https://doi.org/10.1215/S0012-7094-76-04332-5
8 Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Mathematical Notes, Vol 28. Princeton: Princeton University Press, 1982
9 Fu Z W, Grafakos L, Lu S Z, Zhao F Y. Sharp bounds for m-linear Hardy and Hilbert operators. Houston J Math, 2012, 38: 225–244
10 Grafakos L. Montgomery-Smith S. Best constants for uncentred maximal functions. Bull Lond Math Soc, 1997, 29: 60–64
https://doi.org/10.1112/S0024609396002081
11 Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6: 314–317
https://doi.org/10.1007/BF01199965
12 Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952
13 Korányi A, Reimann H M. Quasiconformal mappings on the Heisenberg group. Invent Math, 1985, 80: 309–338
https://doi.org/10.1007/BF01388609
14 Li H Q. Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg. Studia Math, 2009, 191: 89–100
https://doi.org/10.4064/sm191-1-7
15 Li H Q, Qian B. Centered Hardy-Littlewood maximal functions on Heisenberg type groups. Trans Amer Math Soc, 2014, 366(3): 1497–1524
https://doi.org/10.1090/S0002-9947-2013-05965-X
16 Lu S Z, Ding Y, Yan D Y. Singular Integrals and Related Topics. Singapore: World Scientific Publishing Company, 2007
17 Melas A. The best constant for the centered Hardy-Littlewood maximal inequality. Ann of Math, 2003, 157: 647–488
https://doi.org/10.4007/annals.2003.157.647
18 Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226
https://doi.org/10.1090/S0002-9947-1972-0293384-6
19 Niu P, Zhang H, Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group. Proc Amer Math Soc, 2001, 129: 3623–3630
https://doi.org/10.1090/S0002-9939-01-06011-7
20 Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, Vol 43. Princeton: Princeton University Press, 1993
21 Xiao J. Lp and BMO bounds of weighted Hardy-Littlewood averages. J Math Anal Appl, 2001, 262: 660–666
https://doi.org/10.1006/jmaa.2001.7594
22 Zhao F Y, Fu Z W, Lu S Z. Mp weights for bilinear Hardy operators on Rn.Collect Math, 2014, 65: 87–102
https://doi.org/10.1007/s13348-013-0083-6
23 Zhao F Y, Fu Z W, Lu S Z. Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci China Math, 2012, 55: 1977–1990
https://doi.org/10.1007/s11425-012-4465-0
24 Zienkiewicz J. Estimates for the Hardy-Littlewood maximal function on the Heisenberg group. Colloq Math, 2005, 103: 199–205
https://doi.org/10.4064/cm103-2-5
[1] Haixia YU, Junfeng LI. Sharp weak bounds for n-dimensional fractional Hardy operators[J]. Front. Math. China, 2018, 13(2): 449-457.
[2] Fayou ZHAO, Shanzhen LU. A characterization of λ-central BMO space[J]. Front Math Chin, 2013, 8(1): 229-238.
[3] Zunwei FU, Shanzhen LU, . Weighted Hardy operators and commutators on Morrey spaces[J]. Front. Math. China, 2010, 5(3): 531-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed