H-Tensor,real symmetric tensor,positive definite,eigenvalue inclusion set," /> H-tensors" /> H-tensors" /> H-Tensor,real symmetric tensor,positive definite,eigenvalue inclusion set,"/> H-tensors" /> H-Tensor,real symmetric tensor,positive definite,eigenvalue inclusion set,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (3) : 661-678    https://doi.org/10.1007/s11464-016-0519-x
RESEARCH ARTICLE
Criterions for identifying H-tensors
Ruijuan ZHAO1,Lei GAO2,3,Qilong LIU2,Yaotang LI2,*()
1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China
2. School of Mathematics and Statistics, Yunnan University, Kunming 650091, China
3. Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
 Download: PDF(170 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Some new criteria for identifying H-tensors are obtained. As applications, some sufficient conditions of the positive definiteness for an evenorder real symmetric tensor are given, as well as a new eigenvalue inclusion region for tensors is established. It is proved that the new eigenvalue inclusion region is tighter than that of Y. Yang and Q. Yang [SIAM J.Matrix Anal. Appl., 2010, 31: 2517–2530]. Numerical examples are reported to demonstrate the corresponding results.

Keywords H-Tensor')" href="#">H-Tensor      real symmetric tensor      positive definite      eigenvalue inclusion set     
Corresponding Author(s): Yaotang LI   
Issue Date: 17 May 2016
 Cite this article:   
Ruijuan ZHAO,Lei GAO,Qilong LIU, et al. Criterions for identifying H-tensors[J]. Front. Math. China, 2016, 11(3): 661-678.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0519-x
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I3/661
1 Anderson B, Bose N, Jury E. Output feedback stabilization and related problemssolutions via decision methods. IEEE Trans Automat Control AC, 1975, 20: 55–66
2 Bose N, Kamat P. Algorithm for stability test of multidimensional filters. IEEE Trans Acoust Speech Signal Process ASSP, 1974, 22: 307–314
https://doi.org/10.1109/TASSP.1974.1162592
3 Bose N, Modarressi A. General procedure for multivariable ploynomial positivity with control applications. IEEE Trans Autom control AC, 1976, 21: 696–701
4 Bose N, Newcomb R. Tellegons theorem and multivariable realizability theory. Int J Electron, 1974, 36: 417–425
https://doi.org/10.1080/00207217408900421
5 Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438: 942–952
https://doi.org/10.1016/j.laa.2011.05.040
6 Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
7 Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278
https://doi.org/10.1016/j.laa.2013.08.038
8 Fu M. Comments on A procedure for the positive definiteness of forms of even-order. IEEE Trans Automat Control, 1988, 43: 1430
9 Hasan M, Hasan A. A procedure for the positive definiteness of forms of even-order. IEEE Trans Automat Control AC, 1996, 41: 615–617
https://doi.org/10.1109/9.489287
10 Hu S, Huang Z, Ling C, Qi L. E-determinants of tensors. J Symb Comput, 2013, 50:508–531
https://doi.org/10.1016/j.jsc.2012.10.001
11 Kofidis E, Regalia PA. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863–884
https://doi.org/10.1137/S0895479801387413
12 Kolda T, Mayo J. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124
https://doi.org/10.1137/100801482
13 Ku W. Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans Automat control AC, 1965, 10: 372–373
14 Lathauwer L, Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21: 1253–1278
https://doi.org/10.1137/S0895479896305696
15 Li C, Li Y, Kong X. New eigenvalue inclusion sets for tensor. Numer Linear Algebra Appl, 2014, 21: 39–50
https://doi.org/10.1002/nla.1858
16 Li C, Wang F, Zhao J, Zhu Y, Li Y. Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math, 2014, 255: 1–14
https://doi.org/10.1016/j.cam.2013.04.022
17 Lim L. Singular values and eigenvalues of tensors: A variational approach. In: IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. New York: IEEE, 2005, 129–132
18 Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218–1229
https://doi.org/10.1016/j.jmaa.2006.07.064
19 Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096–1107
https://doi.org/10.1109/TAC.2008.923679
20 Qi L. Eigenvalues of a real supersymetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
21 Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377
https://doi.org/10.1016/j.jmaa.2006.02.071
22 Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301–316
https://doi.org/10.1007/s10107-007-0193-6
23 Qi L, Wang Y, Wu E. D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math, 2008, 221: 150–157
https://doi.org/10.1016/j.cam.2007.10.012
24 Wang F, Qi L. Comments on ‘Explicit criterion for the positive definiteness of a general quartic form’. IEEE Trans Automat Control, 2005, 50: 416–418
https://doi.org/10.1109/TAC.2005.843851
25 Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra Appl, 2009, 16: 589–601
https://doi.org/10.1002/nla.633
26 Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530
https://doi.org/10.1137/090778766
27 Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 32: 437–452
https://doi.org/10.1137/130915339
[1] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[2] Tianqing LIU,Zhidong BAI,Baoxue ZHANG. Weighted estimating equation: modified GEE in longitudinal data analysis[J]. Front. Math. China, 2014, 9(2): 329-353.
[3] Yang LIU, Hong LI, Wei GAO, Siriguleng HE, Jinfeng WANG. Splitting positive definite mixed element method for viscoelasticity wave equation[J]. Front Math Chin, 2012, 7(4): 725-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed