|
|
Criterions for identifying H-tensors |
Ruijuan ZHAO1,Lei GAO2,3,Qilong LIU2,Yaotang LI2,*( ) |
1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China 2. School of Mathematics and Statistics, Yunnan University, Kunming 650091, China 3. Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China |
|
|
Abstract Some new criteria for identifying H-tensors are obtained. As applications, some sufficient conditions of the positive definiteness for an evenorder real symmetric tensor are given, as well as a new eigenvalue inclusion region for tensors is established. It is proved that the new eigenvalue inclusion region is tighter than that of Y. Yang and Q. Yang [SIAM J.Matrix Anal. Appl., 2010, 31: 2517–2530]. Numerical examples are reported to demonstrate the corresponding results.
|
Keywords
H-Tensor')" href="#">H-Tensor
real symmetric tensor
positive definite
eigenvalue inclusion set
|
Corresponding Author(s):
Yaotang LI
|
Issue Date: 17 May 2016
|
|
1 |
Anderson B, Bose N, Jury E. Output feedback stabilization and related problemssolutions via decision methods. IEEE Trans Automat Control AC, 1975, 20: 55–66
|
2 |
Bose N, Kamat P. Algorithm for stability test of multidimensional filters. IEEE Trans Acoust Speech Signal Process ASSP, 1974, 22: 307–314
https://doi.org/10.1109/TASSP.1974.1162592
|
3 |
Bose N, Modarressi A. General procedure for multivariable ploynomial positivity with control applications. IEEE Trans Autom control AC, 1976, 21: 696–701
|
4 |
Bose N, Newcomb R. Tellegons theorem and multivariable realizability theory. Int J Electron, 1974, 36: 417–425
https://doi.org/10.1080/00207217408900421
|
5 |
Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438: 942–952
https://doi.org/10.1016/j.laa.2011.05.040
|
6 |
Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
|
7 |
Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278
https://doi.org/10.1016/j.laa.2013.08.038
|
8 |
Fu M. Comments on A procedure for the positive definiteness of forms of even-order. IEEE Trans Automat Control, 1988, 43: 1430
|
9 |
Hasan M, Hasan A. A procedure for the positive definiteness of forms of even-order. IEEE Trans Automat Control AC, 1996, 41: 615–617
https://doi.org/10.1109/9.489287
|
10 |
Hu S, Huang Z, Ling C, Qi L. E-determinants of tensors. J Symb Comput, 2013, 50:508–531
https://doi.org/10.1016/j.jsc.2012.10.001
|
11 |
Kofidis E, Regalia PA. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863–884
https://doi.org/10.1137/S0895479801387413
|
12 |
Kolda T, Mayo J. Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl, 2011, 32: 1095–1124
https://doi.org/10.1137/100801482
|
13 |
Ku W. Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans Automat control AC, 1965, 10: 372–373
|
14 |
Lathauwer L, Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21: 1253–1278
https://doi.org/10.1137/S0895479896305696
|
15 |
Li C, Li Y, Kong X. New eigenvalue inclusion sets for tensor. Numer Linear Algebra Appl, 2014, 21: 39–50
https://doi.org/10.1002/nla.1858
|
16 |
Li C, Wang F, Zhao J, Zhu Y, Li Y. Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math, 2014, 255: 1–14
https://doi.org/10.1016/j.cam.2013.04.022
|
17 |
Lim L. Singular values and eigenvalues of tensors: A variational approach. In: IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. New York: IEEE, 2005, 129–132
|
18 |
Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218–1229
https://doi.org/10.1016/j.jmaa.2006.07.064
|
19 |
Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096–1107
https://doi.org/10.1109/TAC.2008.923679
|
20 |
Qi L. Eigenvalues of a real supersymetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
|
21 |
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377
https://doi.org/10.1016/j.jmaa.2006.02.071
|
22 |
Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301–316
https://doi.org/10.1007/s10107-007-0193-6
|
23 |
Qi L, Wang Y, Wu E. D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math, 2008, 221: 150–157
https://doi.org/10.1016/j.cam.2007.10.012
|
24 |
Wang F, Qi L. Comments on ‘Explicit criterion for the positive definiteness of a general quartic form’. IEEE Trans Automat Control, 2005, 50: 416–418
https://doi.org/10.1109/TAC.2005.843851
|
25 |
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra Appl, 2009, 16: 589–601
https://doi.org/10.1002/nla.633
|
26 |
Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530
https://doi.org/10.1137/090778766
|
27 |
Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 32: 437–452
https://doi.org/10.1137/130915339
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|