Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (2) : 329-353    https://doi.org/10.1007/s11464-014-0359-5
RESEARCH ARTICLE
Weighted estimating equation: modified GEE in longitudinal data analysis
Tianqing LIU1(), Zhidong BAI2, Baoxue ZHANG2()
1. School of Mathematics, Jilin University, Changchun 130012, China
2. Key Laboratory for Applied Statistics of MOE and School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
 Download: PDF(303 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The method of generalized estimating equations (GEE) introduced by K. Y. Liang and S. L. Zeger has been widely used to analyze longitudinal data. Recently, this method has been criticized for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. In this paper, we present a new method named as ‘weighted estimating equations (WEE)’ for estimating the correlation parameters. The new estimates of correlation parameters are obtained as the solutions of these weighted estimating equations. For some commonly assumed correlation structures, we show that there exists a unique feasible solution to these weighted estimating equations regardless the correlation structure is correctly specified or not. The new feasible estimates of correlation parameters are consistent when the working correlation structure is correctly specified. Simulation results suggest that the new method works well in finite samples.

Keywords Consistency      correlation      efficiency      generalized estimating equation (GEE)      longitudinal data      positive definite      repeated measures      weighted estimating equation (WEE)     
Corresponding Author(s): Tianqing LIU,Baoxue ZHANG   
Issue Date: 16 May 2014
 Cite this article:   
Tianqing LIU,Zhidong BAI,Baoxue ZHANG. Weighted estimating equation: modified GEE in longitudinal data analysis[J]. Front. Math. China, 2014, 9(2): 329-353.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0359-5
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I2/329
1 P S Albert, L M McShane. A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of neuroimaging data. Biometrics, 1995, 51: 627−638
https://doi.org/10.2307/2532950
2 R J Carroll, D Ruppert. Transformations and Weighting in Regression. New York: Chapman and Hall, 1998
3 N R Chaganty. An alternative approach to the analysis of longitudinal data via generalized estimating equations. J Statist Plann Inference, 1997, 63: 39−54
https://doi.org/10.1016/S0378-3758(96)00203-0
4 N R Chaganty, J Shults. On elimination the asymptotic bias in the quasi-least squares estimate of the correlation parameter. J Statist Plann Inference, 1999, 76: 127−144
https://doi.org/10.1016/S0378-3758(98)00180-3
5 M Crowder. On the use of a working correlation matrix in using generalised linear models for repeated measurements. Biometrika, 1995, 82: 407−410
https://doi.org/10.1093/biomet/82.2.407
6 M Davidian, D M Giltinan. Nonlinear Models for Repeated Measurement Data. London: Chapman and Hall, 1995
7 K Y Liang, S L Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13−22
https://doi.org/10.1093/biomet/73.1.13
8 K Y Liang, S L Zeger, B Qaqish. Multivariate regression analysis for categorical data. J Roy Statist Soc Ser B, 1992, 54: 3−40
9 A D Lunn, S J Davies. A note on generating correlated binary variables. Biometrika, 1998, 85: 487−490
https://doi.org/10.1093/biomet/85.2.487
10 P McCullagh. Quasi-likelihood functions. Ann Statist, 1983, 11: 59−67 Modified GEE in longitudinal data analysis 353
11 P McCullagh, J A Nelder. Generalized Linear Models. New York: Chapman and Hall, 1989
https://doi.org/10.1007/978-1-4899-3242-6
12 J A Nelder, R W M Wedderburn. Generalized linear models. J Roy Statist Soc Ser A, 1972, 135: 370−384
https://doi.org/10.2307/2344614
13 V Núñez-Antón, G G Woodworth. Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors. Biometrics, 1994, 50: 445−456
https://doi.org/10.2307/2533387
14 R O’Hara-Hines. Comparison of two covariance structures in the analysis of clustered polytomous data using generalized estimating equations. Biometrics, 1998, 54: 312−316
https://doi.org/10.2307/2534017
15 A Rotnitzky, N P Jewell. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 1990, 77: 485−497
https://doi.org/10.1093/biomet/77.3.485
16 M R Segal, J M Neuhaus, I R James. Dependence estimation for marginal models of multivariate survival data. Life Data Analysis, 1997, 3: 251−268
https://doi.org/10.1023/A:1009601031424
17 J Shults, N R Chaganty. Analysis of serially correlated data using quasi-least squares. Biometrics, 1998, 54: 1622−1630
https://doi.org/10.2307/2533686
18 J Shults, S J Ratcliffe, M Leonard. Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. Stata J, 2007, 7: 147−166
19 W G Sun, J Shults, M Leonard. Use of unbiased estimating equations to estimate correlation in generalized estimating equation analysis of longitudinal trials. 2006, UPenn Biostatistics Working Papers. Working Paper 4.
20 B Sutradhar, K Das. On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 1999, 86: 459−465
https://doi.org/10.1093/biomet/86.2.459
21 Y G Wang, V J Carey. Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance. Biometrika, 2003, 90: 29−41
https://doi.org/10.1093/biomet/90.1.29
22 Y G Wang, V J Carey. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. J Amer Statist Assoc, 2004, 99: 845−852
https://doi.org/10.1198/016214504000001178
23 R M Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 1974, 61: 439−447
[1] Wei MEI, Qingzhi YANG. Upper bounds for eigenvalues of Cauchy-Hankel tensors[J]. Front. Math. China, 2021, 16(4): 1023-1041.
[2] Xiaowei YANG, Shuang SONG, Huiming ZHANG. Law of iterated logarithm and model selection consistency for generalized linear models with independent and dependent responses[J]. Front. Math. China, 2021, 16(3): 825-856.
[3] Kun FAN, Rongming WANG. Valuation of correlation options under a stochastic interest rate model with regime switching[J]. Front. Math. China, 2017, 12(5): 1113-1130.
[4] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[5] Ruijuan ZHAO,Lei GAO,Qilong LIU,Yaotang LI. Criterions for identifying H-tensors[J]. Front. Math. China, 2016, 11(3): 661-678.
[6] Wensheng ZHU, Heping ZHANG. A nonparametric regression method for multiple longitudinal phenotypes using multivariate adaptive splines[J]. Front Math Chin, 2013, 8(3): 731-743.
[7] Yang LIU, Hong LI, Wei GAO, Siriguleng HE, Jinfeng WANG. Splitting positive definite mixed element method for viscoelasticity wave equation[J]. Front Math Chin, 2012, 7(4): 725-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed