|
|
Upper bounds for eigenvalues of Cauchy-Hankel tensors |
Wei MEI1, Qingzhi YANG1,2( ) |
1. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China 2. School of Mathematics and Statistics, Kashi University, Kashi 844006, China |
|
|
Abstract We present upper bounds of eigenvalues for finite and infinite dimensional Cauchy-Hankel tensors. It is proved that an m-order infinite dimensional Cauchy-Hankel tensor defines a bounded and positively (m-1)-homogeneous operator from l1 into lp (1<p<∞); and two upper bounds of corresponding positively homogeneous operator norms are given. Moreover, for a fourth-order real partially symmetric Cauchy-Hankel tensor, suffcient and necessary conditions of M-positive definiteness are obtained, and an upper bound of M-eigenvalue is also shown.
|
Keywords
Cauchy-Hankel tensor
eigenvalues
upper bound
M-positive definite
|
Corresponding Author(s):
Qingzhi YANG
|
Issue Date: 11 October 2021
|
|
1 |
K C Chang, T Zhang. On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J Math Anal App, 2013, 408: 525–540
https://doi.org/10.1016/j.jmaa.2013.04.019
|
2 |
H Che, H Chen, Y Wang. M-positive semi-definiteness and M-positive definiteness of fourth-order partially symmetric Cauchy tensors. J Inequal Appl, 2019, 2019: 32
https://doi.org/10.1186/s13660-019-1986-x
|
3 |
H Che, H Chen, Y Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. J Ind Manag Optim, 2020, 16(1): 309–324
https://doi.org/10.3934/jimo.2018153
|
4 |
H Chen, G Li, L Qi. Further results on Cauchy tensors and Hankel tensors. Appl Math Comput, 2016, 275: 50–62
https://doi.org/10.1016/j.amc.2015.11.051
|
5 |
H Chen, L Qi. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11(4): 1263–1274
https://doi.org/10.3934/jimo.2015.11.1263
|
6 |
J Culp, K Pearson, T Zhang. On the uniqueness of the Z1-eigenvector of transition probability tensors. Linear Multilinear Algebra, 2017, 65: 891–896
https://doi.org/10.1080/03081087.2016.1211130
|
7 |
H Frazer. Note on Hilbert's inequality. J Lond Math Soc, 1946, 21: 7–9
https://doi.org/10.1112/jlms/s1-21.1.7
|
8 |
A D Güngör. Lower bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices. Appl Math Comput, 2004, 157(3): 599–604
https://doi.org/10.1016/j.amc.2003.08.103
|
9 |
G H Hardy, J E Littlewood, G Pólya. Inequalities. Cambridge: Cambridge Univ Press, 1952
|
10 |
J He, G Xu, Y Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. J Ind Manag Optim, 2020, 16(6): 3035–3045
https://doi.org/10.3934/jimo.2019092
|
11 |
J Kuang, L Debnath. On new generalizations of Hilbert's inequality and their applications. J Math Anal Appl, 2000, 245: 248–265
https://doi.org/10.1006/jmaa.2000.6766
|
12 |
S Li, Y Li. Checkable criteria for the M-positive definiteness of fourth-order partially symmetric tensors. Bull Iranian Math Soc, 2020, 46: 1455–1463
https://doi.org/10.1007/s41980-019-00335-y
|
13 |
L H Lim. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Tensor Adaptive Processing, Vol 1, 2005. 2005, 129–132
|
14 |
W Mei, Y Song. Infinite and finite dimensional generalized Hilbert tensors. Linear Algebra Appl, 2017, 532: 8–24
https://doi.org/10.1016/j.laa.2017.05.052
|
15 |
J Meng, Y Song. Upper bounds for Z1-eigenvalues of generalized Hilbert tensors. J Ind Manag Optim, 2020, 16(2): 911–918
https://doi.org/10.3934/jimo.2018184
|
16 |
L Qi. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
|
17 |
L Qi. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J Symbolic Comput, 2006, 41: 1309–1327
https://doi.org/10.1016/j.jsc.2006.02.011
|
18 |
L Qi, H Dai, D Han. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4: 349–364
https://doi.org/10.1007/s11464-009-0016-6
|
19 |
S Solak, D Bozkurt. Some bounds on lp matrix and lp operator norms of almost circulant, Cauchy-Toeplitz and Cauchy-Hankel matrices. Math Comput Appl, 2002, 7(3): 211–218
https://doi.org/10.3390/mca7030211
|
20 |
S Solak, D Bozkurt. On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices. Appl Math Comput, 2003, 140(2): 231–238
https://doi.org/10.1016/S0096-3003(02)00205-9
|
21 |
Y Song, W Mei. Structural properties of tensors and complementarity problems. J Optim Theory Appl, 2018, 176: 289–305
https://doi.org/10.1007/s10957-017-1212-2
|
22 |
Y Song, L Qi. Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl, 2014, 451: 1–14
https://doi.org/10.1016/j.laa.2014.03.023
|
23 |
R Türkmen, D Bozkurt. On the bounds for the norms of Cauchy-Toeplitz and Cauchy- Hankel matrices. Appl Math Comput, 2002, 132: 633–642
https://doi.org/10.1016/S0096-3003(01)00221-1
|
24 |
G Wang, L Sun, L Liu. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity, 2020, (3): 1–8
https://doi.org/10.1155/2020/2474278
|
25 |
Y Zhang, L Sun, G Wang. Sharp bounds on the minimum M-eigenvalue of elasticity M-tensors. Mathematics, 2020, 8(2): 250
https://doi.org/10.3390/math8020250
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|