Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (3) : 539-556    https://doi.org/10.1007/s11464-016-0520-4
RESEARCH ARTICLE
Spectral properties of odd-bipartite Z-tensors and their absolute tensors
Haibin CHEN(),Liqun QI
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
 Download: PDF(166 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stimulated by odd-bipartite and even-bipartite hypergraphs, we define odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly evenbipartite) tensors. It is verified that all even order odd-bipartite tensors are irreducible tensors, while all even-bipartite tensors are reducible no matter the parity of the order. Based on properties of odd-bipartite tensors, we study the relationship between the largest H-eigenvalue of a Z-tensor with nonnegative diagonal elements, and the largest H-eigenvalue of absolute tensor of that Z-tensor. When the order is even and the Z-tensor is weakly irreducible, we prove that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the absolute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly odd-bipartite. Examples show the authenticity of the conclusions. Then, we prove that a symmetric Z-tensor with nonnegative diagonal entries and the absolute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor has even order and it is weakly odd-bipartite. After that, it is proved that, when an even order symmetric Z-tensor with nonnegative diagonal entries is weakly irreducible, the equality of the spectrum of the Z-tensor and the spectrum of absolute tensor of that Z-tensor, can be characterized by the equality of their spectral radii.

Keywords H-Eigenvalue      Z-tensor      odd-bipartite tensor      absolute tensor     
Corresponding Author(s): Haibin CHEN   
Issue Date: 17 May 2016
 Cite this article:   
Haibin CHEN,Liqun QI. Spectral properties of odd-bipartite Z-tensors and their absolute tensors[J]. Front. Math. China, 2016, 11(3): 539-556.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0520-4
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I3/539
1 Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438: 942–952
https://doi.org/10.1016/j.laa.2011.05.040
2 Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
3 Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422
https://doi.org/10.1016/j.jmaa.2008.09.067
4 Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11: 1263–1274
https://doi.org/10.3934/jimo.2015.11.1263
5 Chen Z, Qi L. Circulant tensors with applications to spectral hypergraph theory and stochastic process. J Ind Manag Optim, 2016, 12: 1227–1247
https://doi.org/10.3934/jimo.2016.12.1227
6 Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436:3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
7 Ding W, Qi L, Wei Y. M-Tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278
https://doi.org/10.1016/j.laa.2013.08.038
8 Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738–749
https://doi.org/10.1016/j.laa.2011.02.042
9 Hu S, Qi L. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform. Discrete Appl Math, 2014, 169: 140–151
https://doi.org/10.1016/j.dam.2013.12.024
10 Hu S, Qi L, Xie J. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl, 2015, 469: 1–27
https://doi.org/10.1016/j.laa.2014.11.020
11 Li G, Qi L, Yu G. Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl, 2013, 438(2): 813–833
https://doi.org/10.1016/j.laa.2011.10.043
12 Lim L-H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), 2005, 1: 129–132
13 Mantica C A, Molinari L G. Weakly Z-symmetric manifolds. Acta Math Hungar, 2012, 135(1): 80–96
https://doi.org/10.1007/s10474-011-0166-3
14 Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090–1099
https://doi.org/10.1137/09074838X
15 Oeding L, Ottaviani G. Eigenvectors of tensors and algorithms for Waring decomposition. J Symbolic Comput, 2013, 54: 9–35
https://doi.org/10.1016/j.jsc.2012.11.005
16 Pearson K, Zhang T. On spectral hypergraph theory of the adjacency tensor. Graphs Combin, 2014, 30: 1233–1248
https://doi.org/10.1007/s00373-013-1340-x
17 Qi L. Eigenvalue of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
18 Qi L. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
https://doi.org/10.1016/j.laa.2013.03.015
19 Qi L. H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci, 2014, 12: 1045–1064
https://doi.org/10.4310/CMS.2014.v12.n6.a3
20 Qi L, Dai H, Han D. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4: 349–364
https://doi.org/10.1007/s11464-009-0016-6
21 Qi L, Wang Y, Wu E X. D-eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221: 150–157
https://doi.org/10.1016/j.cam.2007.10.012
22 Shao J. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366
https://doi.org/10.1016/j.laa.2013.07.010
23 Shao J, Shan H, Wu B. Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs. Linear Multilinear Algebra (ahead-of-print), 2015, 1–14
24 Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530
https://doi.org/10.1137/090778766
25 Yang Y, Yang Q. On some properties of nonnegative weakly irreducible tensors. arXiv: 1111.0713, 2011
26 Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452
https://doi.org/10.1137/130915339
[1] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[2] Haibin CHEN, Yiju WANG, Guanglu ZHOU. High-order sum-of-squares structured tensors: theory and applications[J]. Front. Math. China, 2020, 15(2): 255-284.
[3] Haibin CHEN, Liqun QI, Yisheng SONG. Column sufficient tensors and tensor complementarity problems[J]. Front. Math. China, 2018, 13(2): 255-276.
[4] Junjie YUE,Liping ZHANG,Mei LU. Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths[J]. Front. Math. China, 2016, 11(3): 623-645.
[5] Jinshan XIE, An CHANG. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph[J]. Front Math Chin, 2013, 8(1): 107-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed