Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (2) : 281-299    https://doi.org/10.1007/s11464-016-0574-3
RESEARCH ARTICLE
Oscillatory hyper Hilbert transforms along general curves
Jiecheng CHEN,Belay Mitiku DAMTEW,Xiangrong ZHU()
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(204 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x)=0f(xΓ(t))eitβt(1+α)dt, where Γ(t) = (t, γ(t)) in ?2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,β is bounded on L2 when β3α,β>0. As a corollary, under this condition, we obtain the Lp-boundedness of Hγ,α,β when 2β/(2β3α)<p<2β(3α). When Γ is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,β is bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β>2α>0.

Keywords Hilbert transform      oscillatory integral      oscillatory hyper Hilbert transform     
Corresponding Author(s): Xiangrong ZHU   
Issue Date: 27 December 2016
 Cite this article:   
Jiecheng CHEN,Belay Mitiku DAMTEW,Xiangrong ZHU. Oscillatory hyper Hilbert transforms along general curves[J]. Front. Math. China, 2017, 12(2): 281-299.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0574-3
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I2/281
1 Bez N. Lp-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves. Proc Amer Math Soc, 2007, 135(1): 151–161
https://doi.org/10.1090/S0002-9939-06-08603-5
2 Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389–416
https://doi.org/10.2140/pjm.1996.175.389
3 Chandarana S. Hypersigular integral operators along space curves. Preprint
4 Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136(9): 3145–3153
https://doi.org/10.1090/S0002-9939-08-09325-8
5 Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper-Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(4): 653–658
https://doi.org/10.1007/s10114-010-7396-0
6 Fabes E B, Riviére N M. Singular intervals with mixed homogeneity. Studia Math, 1966, 27: 19–38
7 Fefferman C. Inequalities for strongly singular convolution operators. Acta Math, 1970, 124: 9–36
https://doi.org/10.1007/BF02394567
8 Fefferman C, Stein E M. Hp Spaces of several variables. Acta Math, 1972, 129: 137–193
https://doi.org/10.1007/BF02392215
9 Hirschman I I. On multiplier transformations. Duke Math J, 1959, 26: 221–242
https://doi.org/10.1215/S0012-7094-59-02623-7
10 Laghi A N, Lyall N. Strongly singular integrals along curves. Pacific J Math, 2007, 233(2): 403–415
https://doi.org/10.2140/pjm.2007.233.403
11 Le H V. Hypersingular integral operators along surfaces. Integral Equations Operator Theory, 2002, 44(4): 451–465
https://doi.org/10.1007/BF01193671
12 Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves. Bull Amer Math Soc, 1974, 80(1): 106–108
https://doi.org/10.1090/S0002-9904-1974-13374-4
13 Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves II. Amer J Math, 1976, 98(2): 395–403
https://doi.org/10.2307/2373893
14 Nagel A, Vance J, Wainger S, Weinberg D. Hilbert transforms for convex curves. Duke Math J, 1983, 50(3): 735–744
https://doi.org/10.1215/S0012-7094-83-05036-6
15 Nagel A, Wainger S. Hilbert transforms associated with plane curves. Trans Amer Math Soc, 1976, 223: 235–252
https://doi.org/10.1090/S0002-9947-1976-0423010-8
16 Stein E M.Singular integrals, harmonic functions and differentiability properties of functions of several variables. Proc Sympos Pure Math, 1976, 10: 316–335
https://doi.org/10.1090/pspum/010/0482394
17 Stein E M. Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
18 Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84(6): 1239–1295
https://doi.org/10.1090/S0002-9904-1978-14554-6
19 Vance J, Wainger S, Wright J. The Hilbert transform and maximal function along nonconvex curves in the plane. Rev Mat Iberoam, 1994, 10(1): 93–121
https://doi.org/10.4171/RMI/146
20 Wainger S. Special trigonometric series in k-dimensions. Mem Amer Math Soc, 1965, 59(3): 735–744
https://doi.org/10.1090/memo/0059
21 Wainger S. On certain aspects of differentiation theory. In: Topics in Modern Harmonic Analysis: Proceedings of a Seminar Held in Torino and Milano, May-June 1982, Vol II. Rome: Istituto Nazionale di Alta Matematica Francesco Severi, 1983, 677–706
22 Wainger S. Averages and singular integrals over lower dimensional sets. In: Beijing Lectures on Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 357–421
23 Wainger S. Dilations associated to flat curves. Publ Mat, 1991, 35: 251–257
https://doi.org/10.5565/PUBLMAT_35191_11
24 Zielinski M. Highly Oscillatory Singular Integrals along Curves. Ph D Dissertation. Madison: University of Wisconsin-Madison, 1985
[1] Jiecheng CHEN, Dashan FAN, Meng WANG. Oscillatory hyper Hilbert transforms along variable curves[J]. Front. Math. China, 2019, 14(4): 673-692.
[2] Junyan ZHAO, Dashan FAN. Derivative estimates of averaging operators and extension[J]. Front. Math. China, 2019, 14(2): 475-491.
[3] Xiaomei WU, Dashan FAN. Oscillatory hyper-Hilbert transform along curves on modulation spaces[J]. Front. Math. China, 2018, 13(3): 647-666.
[4] Shaozhen XU, Dunyan YAN. A restriction theorem for oscillatory integral operator with certain polynomial phase[J]. Front. Math. China, 2017, 12(4): 967-980.
[5] Xiaona CUI, Rui WANG, Dunyan YAN. Double Hilbert transform on D(?2)[J]. Front Math Chin, 2013, 8(4): 783-799.
[6] Shaoguang SHI, Zunwei FU, Shanzhen LU. Weighted estimates for commutators of one-sided oscillatory integral operators[J]. Front Math Chin, 2011, 6(3): 507-516.
[7] Jiecheng CHEN, Dashan FAN, Huoxiong WU, Xiangrong ZHU. Oscillatory integrals on unit square along surfaces[J]. Front Math Chin, 2011, 6(1): 49-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed