Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 135-142    https://doi.org/10.1007/s11464-016-0585-0
RESEARCH ARTICLE
On the generalized derivations of bimodules
Hiroaki KOMATSU()
Faculty of Computer Science and Systems Engineering, Okayama Prefectural University, Soja, 719-1197, Japan
 Download: PDF(116 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, we introduced the notion of a generalized derivation from a bimodule to a bimodule. In this paper, we give a more general notion based on commutators which covers generalized derivations as a special case. Using it, we show that the separability of an algebra extension is characterized by generalized derivations.

Keywords Generalized derivation      separable algebra extension     
Corresponding Author(s): Hiroaki KOMATSU   
Issue Date: 17 November 2016
 Cite this article:   
Hiroaki KOMATSU. On the generalized derivations of bimodules[J]. Front. Math. China, 2017, 12(1): 135-142.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0585-0
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/135
1 Brěsar M. On the distance of the composition of two derivations to the generalized derivations. Glasg Math J, 1991, 33: 89–93
https://doi.org/10.1017/S0017089500008077
2 Elliger S. ¨Uber Automorphismen und Derivationen von Ringen. J Reine Angew Math, 1975, 277: 155–177
3 Komatsu H. Generalized derivations of bimodules. Int J Pure Appl Math, 2012, 77: 579–593
4 Miyashita Y. Finite outer Galois theory of non-commutative rings. J Fac Sci Hokkaido Univ Ser I, 1966, 19: 114–134
[1] Nihan Baydar YARBIL,Nurcan ARGAC. A note on generalized Lie derivations of prime rings[J]. Front. Math. China, 2017, 12(1): 247-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed