Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 247-260    https://doi.org/10.1007/s11464-016-0589-9
RESEARCH ARTICLE
A note on generalized Lie derivations of prime rings
Nihan Baydar YARBIL(),Nurcan ARGAC
Department of Mathematics, Science Faculty, Ege University, 35100 Bornova, Izmir, Turkey
 Download: PDF(159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let R be a prime ring of characteristic not 2, A be an additive subgroup of R, and F, T, D,K: AR be additive maps such that F[x, y]) = F(x)yyK(x) − T(y)x + xD(y) for all x, y ∈ A. Our aim is to deal with this functional identity when A is R itself or a noncentral Lie ideal of R. Eventually, we are able to describe the forms of the mappings F, T, D, and K in case A = R with deg(R)>3 and also in the case A is a noncentral Lie ideal and deg(R)>9. These enable us in return to characterize the forms of both generalized Lie derivations, D-Lie derivations and Lie centralizers of R under some mild assumptions. Finally, we give a generalization of Lie homomorphisms on Lie ideals.

Keywords Prime ring      derivation      generalized derivation      generalized Lie derivation      functional identity      generalized polynomial identity     
Corresponding Author(s): Nihan Baydar YARBIL   
Issue Date: 17 November 2016
 Cite this article:   
Nihan Baydar YARBIL,Nurcan ARGAC. A note on generalized Lie derivations of prime rings[J]. Front. Math. China, 2017, 12(1): 247-260.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0589-9
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/247
1 Albas E. On generalized derivations satisfying certain conditions. Ukrainian Math J, 2011, 63(5): 690–698
https://doi.org/10.1007/s11253-011-0535-7
2 Beidar K I. On functional identities and commuting additive mappings. Comm Algebra, 1998, 26(6): 1819–1850
https://doi.org/10.1080/00927879808826241
3 Beidar K I, Chebotar M A. On functional identities and d-free subsets of rings I. Comm Algebra, 2000, 28(8): 3925–3951
https://doi.org/10.1080/00927870008827066
4 Beidar K I, Chebotar M A. On Lie derivations of Lie ideals of prime algebras. Israel J Math, 2001, 123: 131–148
https://doi.org/10.1007/BF02784122
5 Beidar K I, Martindale W S, Mikhalev A V. Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics, Vol 196. New York: Marcel Dekker, Inc, 1996
6 Bergen J, Herstein I N, Kerr J W. Lie ideals and derivations of prime rings. J Algebra, 1981, 71: 259–267
https://doi.org/10.1016/0021-8693(81)90120-4
7 Brěsar M. Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans Amer Math Soc, 1993, 335: 525–546
https://doi.org/10.1090/S0002-9947-1993-1069746-X
8 Brěsar M. On generalized biderivations and related maps. J Algebra, 1995, 172(3): 764–786
https://doi.org/10.1006/jabr.1995.1069
9 Brěsar M, ˇ Semrl P. Commuting traces of biadditive maps revisited. Comm Algebra, 2003, 31(1): 381–388
https://doi.org/10.1081/AGB-120016765
10 Chuang C L. GPI’s having coefficients in Utumi quotient rings. Proc Amer Math Soc, 1998, 103(3): 723–728
https://doi.org/10.1090/S0002-9939-1988-0947646-4
11 Herstein I N. Topics in Ring Theory. Chicago: Univ of Chicago Press, 1969
12 Hvala B. Generalized derivations in rings. Comm Algebra, 1998, 26(4): 1147–1166
https://doi.org/10.1080/00927879808826190
13 Hvala B. Generalized Lie derivations of prime rings. Taiwanese J Math, 2007, 11(5): 1425–1430
14 Jing W. Additivity of Lie Centralizers on Triangular Rings. Math and Computer Science Working Papers, Paper 8. Fayetteville State Univ, 2011
15 Kharchenko V K. Differential identities of prime rings. Algebra Logic, 1978, 17: 155–168
https://doi.org/10.1007/BF01670115
16 Lee P H, Wong T L. Derivations cocentralizing Lie ideals. Bull Inst Math Acad Sin, 1995, 23(1): 1–5
17 Lee T K. Semiprime rings with differential identities. Bull Inst Math Acad Sin, 1992, 20(1): 27–38
18 Lee T K. Differential identities of Lie ideals or large right ideals in prime rings. Comm Algebra, 1999, 27(2): 793–810
https://doi.org/10.1080/00927879908826462
19 Lee T K. Generalized derivations of left faithful rings. Comm Algebra, 1999, 27(8): 4057–4073
https://doi.org/10.1080/00927879908826682
20 Lee T K, Lin J S. A result on derivations. Proc Amer Math Soc, 1996, 124: 1687–1691
https://doi.org/10.1090/S0002-9939-96-03234-0
21 Liao P B, Liu C K. On generalized Lie derivations of Lie ideals of prime algebras. Linear Algebra Appl, 2009, 430: 1236–1242
https://doi.org/10.1016/j.laa.2008.10.022
22 Nakajima A. On generalized higher derivations. Turkish J Math, 2000, 24: 295–311
23 Posner E C. Prime rings satisfying a polynomial identity. Proc Amer Math Soc, 1960, 11: 180–183
https://doi.org/10.1090/S0002-9939-1960-0111765-5
24 Scudo G. Generalized derivations acting as Lie homomorphisms on polynomials in prime rings. South Asian J Math, 2014, 38(4): 563–572
25 Xu X W, Ma J, Niu F W. Annihilators of power values of generalized derivation. Chinese Ann Math Ser A, 2007, 28: 131–140 (in Chinese)
[1] Zhuo ZHANG, Jixia YUAN, Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras[J]. Front. Math. China, 2020, 15(6): 1295-1306.
[2] Zhenyuan NI, Jiancai SUN. Super-biderivations on twisted N = 1 Schrödinger-Neveu-Schwarz algebra[J]. Front. Math. China, 2019, 14(5): 907-922.
[3] Juan LUO, Shengqiang WANG, Quanshui WU. Frobenius Poisson algebras[J]. Front. Math. China, 2019, 14(2): 395-420.
[4] Xiaomin TANG, Lijuan LIU, Jinli XU. Lie bialgebra structures on derivation Lie algebra over quantum tori[J]. Front. Math. China, 2017, 12(4): 949-965.
[5] Ruipu BAI, Zhenheng LI, Weidong WANG. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules[J]. Front. Math. China, 2017, 12(3): 515-530.
[6] Shengqiang WANG. Modular derivations for extensions of Poisson algebras[J]. Front. Math. China, 2017, 12(1): 209-218.
[7] Hiroaki KOMATSU. On the generalized derivations of bimodules[J]. Front. Math. China, 2017, 12(1): 135-142.
[8] Li REN,Qiang MU,Yongzheng ZHANG. A class of generalized odd Hamiltonian Lie superalgebras[J]. Front. Math. China, 2014, 9(5): 1105-1129.
[9] Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Front Math Chin, 2013, 8(4): 973-986.
[10] Lili MA, Liangyun CHEN, Yongzheng ZHANG. Finite-dimensional simple modular Lie superalgebra M[J]. Front Math Chin, 2013, 8(2): 411-441.
[11] Zhu WEI, Yongzheng ZHANG. Derivations for even part of finite-dimensional modular Lie superalgebra Ω?[J]. Front Math Chin, 2012, 7(6): 1169-1194.
[12] Jinglian JIANG, Xiaoli KONG. First cohomology group of rank two Witt algebra to its Larsson modules[J]. Front Math Chin, 2011, 6(4): 671-688.
[13] Yongsheng CHENG, Hengyun YANG. Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type[J]. Front Math Chin, 2010, 5(4): 607-622.
[14] Jiayuan FU, Yongcun GAO, . Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 637-650.
[15] YU Nina. Class of representations of skew derivation Lie algebra over quantum torus[J]. Front. Math. China, 2008, 3(1): 119-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed